
        Corresponding Author: alireza.aslnemati@edu.ikiu.ac.ir 

        https://doi.org/10.48314/ramd.v1i2.56  

Licensee System Analytics. This  article is an open access article distributed under the terms and conditions of the Creative 

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0). 

 

 
 

 

 

 

 

 

1|Introduction    

1.1|Overview of Federated Learning  

Federated Learning (FL) is a decentralized machine learning paradigm that allows multiple devices or 

institutions to train a global model collaboratively without sharing raw data. Unlike traditional machine 

learning, where data is centralized on a single server, FL enables participants to train models locally and only 

share model updates, ensuring privacy and data security [1]. This approach has gained traction in fields like 

healthcare, finance, and edge computing, where privacy concerns and data regulations (e.g., General Data 

Protection Regulation (GDPR), Health Insurance Portability and Accountability Act (HIPAA)) limit data 

sharing [1]. For example, hospitals can collaboratively build diagnostic models without exposing patient 

records. 

1.2|Importance of FL in Distributed Machine Learning and Privacy 

FL is significant because it balances privacy with collaborative learning. By keeping data localized and sharing 

only aggregated model updates, FL minimizes the risk of data breaches and ensures compliance with privacy 

regulations [3]. However, FL introduces new challenges, particularly when client data is non-Independent 

And Identically Distributed (non-IID). Real-world datasets often vary across users due to demographic 

differences, user behavior, or regional variations. This data heterogeneity leads to model bias, slower 

convergence, and degraded performance [2]. 
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1.3|Motivation for Reviewing and Comparing FL Algorithms 

Researchers have proposed several state-of-the-art FL algorithms to tackle the challenges posed by non-IID 

data. Federated Averaging (FedAvg), the baseline FL algorithm, averages client model updates. Although 

efficient, it faces difficulties dealing with non-IID data, leading to inconsistent local updates [3], [1]. II.

 Federated Proximal (FedProx), an enhancement of FedAvg, incorporates a proximal term to prevent local 

updates from deviating too far from the global model, which helps improve convergence in non-IID scenarios 

[3]. Model Contrastive Federated Learning (MOON) represents a more advanced approach that uses 

contrastive loss to align local and global models, ensuring stability and faster convergence, particularly in non-

IID environments [2]. While these algorithms are designed to address non-IID challenges, no consensus 

exists on which one performs best under varying conditions [4], [5]. This uncertainty highlights the need for 

a comprehensive comparison of these algorithms. 

1.4|Research Objectives 

 The primary goal of this survey is to analyze and compare the performance of FedAvg, FedProx, and MOON 

under both IID and non-IID settings. Using the Modified National Institute of Standards and Technology 

(MNIST) dataset as a benchmark, this paper aims to: 

I. Evaluate performance: compare accuracy, convergence speed, and communication efficiency across different FL 
algorithms. 

II. Assess robustness: Examine how each algorithm handles data heterogeneity, including label distribution skew, 
feature imbalance, and quantity variations [3], [6]. 

III. Identify Trade-Offs: Highlight the strengths, weaknesses, and computational costs associated with each approach, 
providing insights for future FL deployments. 

2|Background and Preliminaries 

Understanding FL and its challenges is crucial for evaluating how different algorithms, like FedAvg, FedProx, 

and MOON, address non-IID data issues. This section provides an overview of FL fundamentals, the impact 

of data heterogeneity, and the mathematical formulation behind distributed learning. 

2.1|Federated Learning Basics 

FL is a decentralized machine learning paradigm that enables multiple clients—such as mobile devices, 

hospitals, or financial institutions—to collaboratively train a shared global model without sharing raw data. 

Unlike traditional centralized learning, where all data is transferred to a central server for training, FL keeps 

data local, preserving privacy and reducing the risk of data breaches [1]. 

2.1.1|Centralized vs. decentralized learning 

In centralized learning, a server collects data from multiple sources, consolidates it into a single dataset, and 

trains a model. While effective, this approach raises significant privacy and security concerns, especially when 

dealing with sensitive information like medical records or financial transactions [3]. In contrast, decentralized 

FL trains models locally on client devices. Each client trains its model using local data and sends only the 

model updates (gradients or parameters) to a central server, aggregating them to update the global model. 

This approach enhances privacy and reduces the need for large-scale data transfers, making it more efficient 

for distributed systems [4]. 

2.1.2|Privacy concerns and communication efficiency 

While FL improves privacy by keeping data local, it introduces new risks. Attackers can infer sensitive 

information from model updates, even if raw data is not shared. Methods like differential privacy and Secure 

Multi-Party Computation (SMPC) can mitigate these risks but often come at the cost of increased 

computational overhead [1]. Communication efficiency is another challenge. In FL, clients must frequently 

exchange model updates with the server. This can strain network resources, especially in environments with 
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limited bandwidth or unstable connections [6]. Techniques like model compression, quantization, and sparse 

updates can help reduce communication costs while maintaining model performance [5]. 

2.1.3|Federated Averaging as a Baseline 

The FedAvg algorithm, introduced by [1], is the most widely used baseline in FL. It works as follows: 

I. Each client trains a local model using its data for multiple epochs. 

II. Clients send their updated model parameters to the server. 

III. The server aggregates these updates by averaging the parameters and updates the global model. 

Mathematically, the global model w at each round t is updated as 

where wi 
t represents the local model of client i, ni is the dataset size for client i, and n is the total number of 

samples across all clients [3]. While FedAvg performs well in IID settings, it struggles with non-IID data 

because clients' local updates are biased by their unique data distributions, causing the global model to drift 

away from an optimal solution [3]. 

2.2|Non-IID Data Challenges in Federated Learning 

One of the biggest challenges in FL is dealing with non-IID data, where client datasets differ in class 

distribution, feature space, and quantity. This statistical heterogeneity causes model divergence, slower 

convergence, and reduced accuracy [3], [4]. The key non-IID challenges include. 

2.2.1|Statistical heterogeneity: Imbalanced class distributions 

In real-world applications, clients often have skewed class distributions. For example, a smartphone used by 

a teenager may generate app usage data that differs from that of an elderly user. This label distribution skew 

leads to biased model updates, making it hard for the global model to generalize across all clients [3]. FedProx 

addresses this issue by adding a proximal term to the loss function, preventing local models from drifting too 

far from the global model [3]. 

2.2.2|System heterogeneity: Different device capabilities 

FL operates across devices with varying computational power, memory, and battery life. High-performance 

servers can process complex models, while low-power IoT devices may struggle with the same workload [1]. 

To address this, some FL frameworks, like MOON, adjust model complexity based on device capacity, 

ensuring weaker devices can still participate effectively [3]. 

2.2.3|Communication constraints: Bandwidth and network fluctuations 

Efficient communication is critical in FL, as clients frequently exchange model updates with the server. 

However, limited bandwidth, network congestion, and intermittent connectivity can delay updates and slow 

convergence [2]. Approaches like compressed updates, sparsification, and quantization reduce the size of 

transmitted data while maintaining model performance [4]. 

2.3|Mathematical Formulation 

FL aims to minimize a global loss function across distributed clients while accounting for non-IID data. 

Suppose there are N clients, each with a local dataset Di, and the objective is to minimize the following global 

loss function: 

where: 

I. F(w) is the global loss function. 

II. Fi(w) represents the local loss function of client i. 

III. Di is the size of the dataset for client i. 
IV. D is the total number of data points across all clients. 

wt+1 = ∑  n
i=1

ni

n
wi 

t,   

min F(W) = ∑  N
i=1

|Di|

D
Fi(W),   
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2.3.1|Data distribution differences in IID vs. Non-IID settings 

In IID settings, each client’s dataset follows the same underlying distribution: 

However, in non-IID settings, client data distributions differ: 

This distribution mismatch causes local models to diverge, making it challenging to aggregate them into a 

cohesive global model [3], [6]. 

2.4|Summary 

In summary, while FL offers significant advantages for privacy-preserving distributed learning, it faces critical 

challenges when client data is non-IID. The FedAvg algorithm serves as a baseline but struggles with statistical 

heterogeneity, system constraints, and communication bottlenecks. Advanced approaches like FedProx and 

MOON attempt to mitigate these challenges by regularizing updates, personalizing models, and optimizing 

communication [4], [5]. The next section will delve deeper into how these algorithms perform under different 

non-IID conditions, comparing their strengths, limitations, and trade-offs. 

3|Related Work 

3.1|Comparison of Federated Learning Algorithms 

FL has gained significant attention due to its ability to train models across decentralized devices while 

preserving data privacy. One of the most widely used FL algorithms is FedAvg, introduced by McMahan et 

al. [5]. In this approach, each client trains a model locally and sends updates to the server, which are averaged 

to form a global model. FedAvg works well in IID settings, where data across clients is similar. However, 

when data is non-IID and distributed unevenly across clients, FedAvg experiences slower convergence and 

reduced accuracy. To overcome these challenges, FedProx was introduced by Sahu et al. [4]. FedProx includes 

a proximal regularization term in the optimization process to reduce discrepancies between local and global 

models. This adjustment allows FedProx to perform better in non-IID scenarios, achieving faster 

convergence and more accurate models than FedAvg. MOON, proposed by Hartmann et al.  [8], takes a 

different approach by incorporating contrastive learning, which helps reduce the discrepancies between client 

models. MOON has been shown to outperform both FedAvg and FedProx in non-IID environments, 

providing faster convergence and better generalization. 

3.2|Benchmarks and datasets used in federated learning research 

Various datasets are commonly used to evaluate the performance of FL algorithms. MNIST, Federated 

Extended Modified National Institute of Standards and Technology (FEMNIST), and CIFAR-10 are some 

of the most widely adopted benchmarks in FL research. MNIST, a classic dataset of handwritten digits, is 

often used in experiments to compare FedAvg, FedProx, and MOON, especially in both IID and non-IID 

settings [5], [6]. FEMNIST, an extension of MNIST with handwritten characters from a broader range of 

people, is used to test FL algorithms in more complex non-IID environments, where data distributions are 

skewed and imbalanced [7]. CIFAR-10, a dataset containing 60,000 color images across 10 classes, is more 

complicated than MNIST and is often used to evaluate the scalability and efficiency of FL algorithms, 

particularly in image classification tasks [10]. These datasets allow researchers to test the generalization ability 

of FL algorithms across various types of data and client distributions. 

3.3|Performance of FedAvg, FedProx, and MOON in Different Settings 

The performance of FL algorithms varies between IID and non-IID settings. FedAvg works well in IID 

scenarios, where data is evenly distributed but struggles with convergence in non-IID environments. FedProx, 

with its proximal regularization, is more robust in non-IID settings, converging faster and achieving higher 

Pi(X, Y) = Pj(X, Y), for all i,j.  

Pi(X, Y)  ≠ Pj(X, Y).  (1) 
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accuracy. Using contrastive learning, MOON outperforms FedAvg and FedProx in non-IID environments, 

offering the fastest convergence and best accuracy, making it the most robust for handling data heterogeneity. 

3.4|Discussion on Algorithm Performance in IID vs. Non-IID Settings 

The comparison of FedAvg, FedProx, and MOON highlights the primary challenge of FL: Managing non-

IID data. FedAvg is effective when the data across clients is similar (IID), but its performance drops 

significantly when it becomes more heterogeneous (non-IID). FedProx and MOON offer more robust 

solutions for non-IID data, with FedProx being particularly suitable for scenarios where client data 

distributions are imbalanced but still share some similarities. However, MOON stands out as the best 

performer in the most challenging non-IID environments, providing faster convergence and better 

generalization due to its innovative contrastive learning approach 

4|Methodology 

This experiment uses the MNIST dataset of 60,000 training and 10,000 test images to evaluate FL algorithms 

(FedAvg, FedProx, and MOON) under both IID and non-IID conditions. The dataset is evenly distributed 

across clients in the IID setup, while in the non-IID setup, data is unevenly distributed among clients. The 

experiments are run using the FL-bench simulator, with support for both serial and parallel execution and 

GPU acceleration for faster training. The evaluation metrics include accuracy, loss, convergence rate, and 

communication efficiency. Each client trains for 20 local epochs and sends updates to the server, aggregating 

them and broadcasting the updated global model. The process repeats for 100 global rounds. For 

hyperparameters, FedAvg uses a learning rate of 0.01, an SGD optimizer, a batch size of 32, 20 local epochs, 

and 50 global epochs. FedProx follows similar settings but includes a proximal regularization term (μ) of 0.1. 

MOON uses a learning rate of 0.01, a Tau value of 0.5, Mu of 5, 20 local epochs, and 100 global epochs. The 

experiment involves 50 clients, each training for 20 local epochs, with global model updates over 50 global 

rounds. The data distribution varies between the IID and non-IID setups. 

5|Experiments and Results 

In this section, we present the experimental results comparing the performance of the FedAvg, FedProx, and 

MOON algorithms in both IID and non-IID settings. We analyze the algorithms' convergence behavior, 

accuracy, and loss and provide insights into the factors influencing their performance. The experiments were 

conducted on the MNIST dataset. 

5.1|IID Results 

In the IID scenario, where data is evenly distributed across all clients, all three algorithms—FedAvg, FedProx, 

and MOON—show impressive performance. The training curves for all three algorithms indicate rapid 

convergence, with the accuracy reaching nearly 100% within the initial communication rounds. 

I. Federated averaging: The FedAvg algorithm achieves a quick and smooth increase in accuracy, with both the 
validation and test accuracies closely following each other. The model stabilizes early, with minimal fluctuations. 
This result is expected, as FedAvg is well-suited for IID settings, where data is uniformly distributed across clients. 
The lack of significant fluctuations indicates that FedAvg performs efficiently in this scenario. 

II. Federated proximal: FedProx shows similar performance to FedAvg, with a rapid rise in accuracy. However, the 
test accuracy curve is slightly more stable than FedAvg, suggesting that the regularization term in FedProx helps 
maintain model consistency even when minor variations occur in the local updates. This behavior demonstrates 
FedProx’s ability to reduce fluctuations in accuracy slightly. 

III. Model contrastive federated learning: MOON performs exceptionally well in IID settings, with a smooth and fast 
convergence to near 100% accuracy. The accuracy curves for both the validation and test sets show minimal 
fluctuation, indicating that the contrastive learning technique used in MOON effectively handles model alignment. 
Consistent validation and test accuracy performance reinforces MOON's robustness in IID settings. 
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a.                                                b.                                               c.     

Fig. 1. Accuracy of FedAvg, FedProx, and MOON under IID; a. FedAvg under IID scenario, b. 

FedProx under IID scenario, c. moon under IID scenario. 

5.2|Non-IID Results 

In the non-IID scenario, where data is distributed unevenly across clients, we observe more significant 

differences in the algorithms' performance. 

I. Federated averaging: FedAvg shows slower convergence in the non-IID scenario compared to the IID setting. 
The accuracy fluctuates significantly, especially in the test set, reflecting the algorithm's difficulty in dealing with 
the non-IID data distribution. These fluctuations occur because FedAvg does not have mechanisms to address 
local data imbalances, causing inconsistencies between the local and global models. 

II. Federated proximal: FedProx performs better than FedAvg in non-IID settings, showing smoother convergence 
and fewer fluctuations in accuracy. The addition of the proximal regularization term helps reduce the 
discrepancies between local models and the global model. FedProx achieves more stable performance, but still 
faces some fluctuations in accuracy, especially during the early communication rounds. 

III. Model contrastive federated learning: MOON exhibits the best performance in the non-IID scenario. The 
contrastive learning technique significantly reduces accuracy fluctuations, resulting in more stable convergence 
compared to both FedAvg and FedProx. MOON achieves higher accuracy with minimal fluctuation, 
demonstrating that its approach effectively mitigates the challenges posed by non-IID data. 

 

Fig. 2. Accuracy of FedAvg, FedProx, and MOON under non-IID; a. FedAvg under non-IID scenario, b, 

FedProx under non-IID scenario, c. moon under non-IID scenario. 

5.3|Class Distribution in IID and Non-IID Settings 

This section compares the class distribution in IID and non-IID settings. In the IID setup, the data is evenly 

distributed across clients, ensuring a balanced representation of all classes and facilitating easier training and 

better algorithm performance. In contrast, the non-IID setup has an uneven data distribution, with some 

clients receiving only a subset of the classes, creating imbalance and challenges for the algorithms. This uneven 

distribution can slow convergence and affect model performance as the algorithms struggle to generalize 

across diverse data distributions. 

Fig. 3. Comparison of experimental data across different ranges; a. 

Class distribution in IID, b. class distribution in non-IID. 
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6|Discussion 

The performance differences between FedAvg, FedProx, and MOON in IID and non-IID settings stem from 

several factors. In IID scenarios, all algorithms perform well, with FedAvg showing the quickest convergence. 

However, in non-IID environments, FedAvg struggles due to imbalanced data, while FedProx and MOON 

better handle local data variations, with MOON providing the most stable performance. Additionally, non-

IID setups increase communication costs, as frequent updates are needed to address discrepancies between 

local and global models. Both FedProx and MOON manage this more efficiently, with MOON offering the 

best balance of communication efficiency and performance. In terms of convergence, FedProx and MOON 

demonstrate more stable and faster convergence in non-IID settings, with MOON excelling in minimizing 

model divergence. 

7|Conclusion 

This study compared the performance of three FL algorithms—FedAvg, FedProx, and MOON—across both 

IID and non-IID settings. In IID scenarios, where data is evenly distributed, FedAvg showed the fastest 

convergence and high accuracy, but MOON and FedProx were more stable, with MOON ultimately 

achieving the best performance. In non-IID settings, FedAvg faced slower convergence and instability, while 

FedProx, through regularization, improved the handling of data heterogeneity. MOON outperformed 

FedAvg and FedProx, offering superior convergence and accuracy thanks to its contrastive learning approach. 

FedAvg is the most efficient for IID environments, but MOON is recommended for non-IID cases due to 

its robustness and generalization. FedProx is also a viable option for moderate data heterogeneity. Future 

research in FL should focus on enhancing regularization techniques, exploring personalized learning for 

specific client needs, and improving communication efficiency in large-scale systems. Additionally, 

multimodal FL, integrating diverse data types, could enhance model robustness and adaptability. In 

conclusion, while FedAvg is best for IID, MOON stands out for its effectiveness in non-IID scenarios, and 

advancements in FL will further broaden its real-world applications. In conclusion, FedAvg is well-suited for 

IID environments, while FedProx and MOON excel in non-IID settings. MOON provides the most effective 

solution for handling data heterogeneity. Further advancements in FL, especially in personalization and 

communication efficiency, will expand its applicability to real-world scenarios.    
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