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1|Introduction    

In the past decade we have seen a transformation in the manufacturing environment which is as a result of 

the introduction of Industry 4.0 (IR4.0), that has brought along digital technologies like Internet of Things 
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Abstract 
The fast growth of digital technologies in Industry 4.0 brought monumental developments in automation systems and 

efficiency rates. However, the recent shift to Industry 5.0 has brough its own demands, this time the integration of human-

centered, sustainable, and resilient approach into the manufacturing environment. This research establishes a strong 

Multi-Criteria Decision-Making (MCDM) framework to meet this imperative knowledge gap in sustainable evaluation of 

innovative manufacturing and digital technologies. A thorough comparison of ten criteria of sustainability to 

environmental, economic as well as social indicators was conducted via Analytic Hierarchy Process (AHP) in order to 

determine their weighted importance. The process of evaluation included the application of Technique for Order of 

Preference by Similarity to Ideal Solution (TOPSIS) and VIKOR method to a seven-emerging technology decision-

making matrix. Tech C maintained the highest degree of sustainability among any of the alternatives with the TOPSIS 

value of 0.8106 and recorded a zero VIKOR value. The identical rankings being reached by both TOPSIS and VIKOR 

methods confirm the credibility of the model. The research provides a technical assessment method which allows 

stakeholders to select technologies based on Industry 5.0 philosophies through a framework that can be used for 

pragmatic and repetitive application.  
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  (IoT), Artificial Intelligence (AI), big data analytics, Cyber-Physical Systems (CPS) and smart robots to what 

used to be very much traditional manufacturing [1], These technologies which provides real-time data 

collection capabilities, alongside automated processes and intelligent decision capabilities, together provide 

and produce increased productivity together with operation efficiency and flexible outcomes for 

manufacturing industries. Recently, Industry 5.0 (IR5.0) has emerged to complement the many progresses 

that has been made in the manufacturing environment. The IR5.0 which seeks to revitalize industry through 

human-focused technology innovation is aim to promotes durability together with environmental 

sustainability [2]. 

While theoretical possibilities of IR4.0 and IR5.0 to bring about sustainability are extremely well recognized 

internationally, empirical research evaluating actual deployments indicate a crucial lack in regards to the 

application of quantitative and qualitative performance measures. Most sustainable digital change research is 

predominantly biased toward quantitative measures, i.e., carbon footprint, cost savings, material efficiency 

use, and energy efficiency [3]. These measurable outcomes are used most frequently as part of a misguided 

effort to create a justification case for smart technology investment and also to benchmark operating and 

environmental performance against. 

In real-life situation, sustainability is far beyond what is achieved through technology alone according to the 

triple bottom line of environmental, financial, and social issues. An imbalanced and disproportionate 

emphasis on measurable performance does make a person shortsighted to quantitative performance like 

enhanced workers' welfare, job enrichment, worker decision-participation, organizational cultural change, and 

socio-technical integration. For example, as a stepping stone to this, a factory maximizes energy use with AI 

in such a manner that it maximizes, and in so doing, it also maximizes the job stress, workers' alienation, or 

deskilling of the workers a consideration which the digital transformation analytics and sustainability reports 

barely reflect. 

This quant-qual imbalance is a serious limitation of current empirical studies on implementing sustainable 

IR4.0/5.0. The result is a disconnected picture of sustainability performance with technology and 

environment concerns taking over the center at the expense of people- and social-focused concerns that are 

central to IR5.0 vision. 

In addition, techniques used in the majority of empirical studies are not mixed methods techniques and 

therefore do not allow subjective, experiential, and context-dependent knowledge to be used to make 

decisions regarding how technological deployments affect different stakeholders [4], [5]. Leaving out such 

knowledge can potentially create policies and strategies that are short-term optimized but not aimed towards 

long-term objectives of sustainability like long-term worker satisfaction, civic participation, and optimized 

usage of technology. 

Furthermore, empirical data for emerging markets as well as geographies that remain underrepresented to 

date are chiefly absent, lending further to smaller generalizability and scope of research results [6]. Such 

geographies generally are burdened with characteristic challenges such as infrastructural deficit, scarcity of 

skills, and regulative voids which have implications for IR4.0/5.0 success in implementation as well as in 

sustainability. Qualitative work by such contexts thus may not adequately consider realities on the ground nor 

offer practical, context-based solutions in analyses of sustainability. 

Sustainability performance measurement needs a fundamental change due to the Industry 5.0 agenda. The 

automation and data-driven for productivity of IR4.0 stands opposite to IR5.0 which focuses on creating 

synergies between humans and machines for technology-based human capability enhancement rather than 

human replacement [7], [8]. Performance evaluation requires a transformation which should introduce metrics 

that care for people through assessments of mental and physical health as well as work-life harmony and 

social network development together with information technology literacy and job satisfaction levels. 

The need for a paradigm transition receives more support every day yet scientists have not established 

adequate methods to measure how these softer metrics can be evaluated. Advanced supply chain management 
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  systems using algorithms and technologies perform excellent management tasks but we lack substantial 

research about how these systems influence employee attainment of purpose and creativity and self-direction 

at work [9], [10]. Although robots and machine learning technologies automate hazardous tasks, they 

frequently create job loss and destroy valuable industrial experience which organizations do not measure in 

their sustainability KPIs. 

The exclusion of qualitative aspects makes meaningless the sustainable integration approach of IR4.0 and 

IR5.0 models. Complete all-round maturity of decision supports faces inhibition which prevents policymakers 

along with managers and practitioners from reaching all-round sustainability performance outcomes. 

Research in the next wave will harmonize facts and subjective realities to develop these N-dimensional portrait 

decision aids about digital transformation effects. 

Furthermore, qualitative and quantitative integration of sustainability results is as much a matter of strategy 

as methodology. As businesses face increasing pressure from regulators, investors, and customers to 

demonstrate themselves as responsible innovators as well as socially responsible, the ability to report on and 

monetize social and human-focused outcomes is a business asset. Using weaker empirical evidence would 

allow firms to execute sustainability investments as mere marketing ploys which yield financial profit yet 

sustain social misconduct and worker grievances. 

According to Blunck et al. [11], future research on this subject must combine quantitative data evaluation of 

energy statistics and productivity metrics and emission reductions with qualitative ethnographic interviews 

and in-field observation of cases together with stakeholder research sessions. Research through mixed 

methods will enables the measurement of both direct impacts alongside explanations about methods and 

reasons and inclusion of the affected participants as well as influence from environmental context. 

Special integrated tools for sustainability assessment should be developed according to priorities for use 

within IR4.0/5.0 environments. The adoption of multi-criteria decision tools will enable assessment of 

environmental sustainability together with economic and social objectives through complete stakeholder 

involvement at technology implementation stages. The adoption of full-scale sustainability effects becomes 

possible through new methods in the combination of S-LCA and digital ethnography and human-centered 

design thinking. 

Recent empirical studies about sustainable development driven by Industry 4.0 and 5.0 come up short when 

examining actual realities. Research and practice about sustainability suffer from insufficient analysis because 

they measure results primarily through quantitative numbers yet lack qualitative assessment methods. This 

research study intends to address this issue by using empirical data with field observations to accomplish its 

sustainability performance evaluation objectives through an expanded research approach. The realization of 

IR4.0/5.0 technologies depends on this approach to achieve its complete potential by creating better and 

stronger industrial systems which support human values. 

2|Methodology 

In order to address the research gaps presented above, this study has proposed a novel assessment approach 

that is based on the integration of quantitative assessment with qualitative methods for evaluating IR4.0/5.0 

sustainability. The methodological structure comprises of four inter-connected elements which include. 

I. Stakeholder-centric system definition and criteria elicitation 

II. Social Life Cycle Assessment (S-LCA) coupled with digital ethnography 

III. Human-centered design thinking for iterative refinement and feedback loops 

IV. Multi-Criteria Decision-Making (MCDM) for integrated sustainability evaluation 
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  Stakeholder-centric system definition and criteria elicitation 

Relevant stakeholders such as workers, managers, policy-makers and environmental and community members 

and experts participate in defining sustainability criteria across Environmental (E), Economic (C), and Social 

(S) dimensions during the first stage. A combination of participatory workshops and Delphi technique was 

used to gather and arranges essential sustainability indicators (criteria) for priority identification. The 

indicators used in this regard include: 

I. Environmental: It covers CO₂ reduction, energy savings, waste generation. 

II. Economic: Return on Investment (ROI), cost savings, productivity 

III. Social: The worker's well-being which stands alongside the principles of inclusion alongside job satisfaction 

within the social category. 

Mathematically, this can be expressed as follows: 

Let 

where, x1, x2, x3, , , , xn are the set of sustainability alternatives that is the different IR4.0/5.0 technologies and 

adopted strategies. 

where, c1, c2, c3, , , , cm are the criteria based on the triple bottom line of environmental, economic, and social 

dimensions  

S-LCA coupled with digital ethnography 

In addressing one of the gaps identified in this study, a blended S-LCA and digital ethnography approach is 

proposed to addressed the human-centered aspects of sustainability using qualitative approach, which several 

studies in the past has reported to be missing in most of the sustainability assessment in manufacturing. In 

this study, the UNEP guidelines to measure social performance has been adopted for the S-LCA approach 

and they include: 

I. Worker rights 

II. Health and safety 

III. Community engagement 

IV. Human development 

Hence, in the implementation of the S-LCA for sustainability in the manufacturing environment the following 

impact matrix is used: 

Overall social score:  

where, wij is the weight of subcategory j for stakeholder group i. For the Digital Ethnography part, data are 

collected through wearables and mobile tracking devises after due consultation and consent. The data are also 

collected through online forums, video interviews and through chatbots capturing real-time feedback. They 

are coded and mapped to the themes (e.g., well-being, inclusion, autonomy). 

Human-centered design thinking integration 

Data is obtained through design thinking organizations establish specifically for this purpose. Repeated 

contact with both users and stakeholders is established. The phases involve in the human-centered design 

thinking include: 

X = {x1, x2, x3, , , , xn}, (1) 

C = {c1, c2, c3, , , , cm}, (2) 

Sij = Score of social subcategory j for stakeholder group i.  

Stotal = ∑ ∑ wij ∗ Sij
l
j=1

k
i=1 , (3) 
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  I. Empathize, where ethnographic study and surveys are carried out. 

II. Define, systematic use of stakeholder inputs which transform problems into new frames. 

III. Ideate, users together with stakeholders work with each other to generate potential solution. 

IV. Prototype, the development of IR4.0/5.0 models (such as cobot integration). 

V. Test, pilot and gather feedback using both qualitative and quantitative instruments. 

The MCDM model accepts feedback which leads to dynamic modifications of weights and preferences. 

MCDM (AHP-TOPSIS-VIKOR Framework) for integrated sustainability evaluation 

The study used the Analytic Hierarchy Process (AHP) method to prioritize each criterion and the TOPSIS 

for ranking the alternatives, while the VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje) 

method is used for validating the results. The AHP enables decision-makers to compare criteria and calculate 

their relative weights. The AHP process consists of the following steps [12]:  

Pairwise Comparison Matrix (PCM): Decision-makers compare each criterion to every other criterion and 

give numerical values to indicate their relative relevance. Let wij signify the weight given to criteria ii over 

criterion j. 

Normalization: To guarantee consistency, normalize the PCM and calculate the priority vectors for each 

criterion. 

Eigenvalue and consistency ratio: Determine the eigenvalue and consistency ratio to confirm the consistency 

of judgments. The resulting priority vector, given by W = (w1, w2, wn, … , wn), indicates the weights of the 

criterion. 

However, for data collection and normalization, it involves gathering relevant data for each of the indicator 

and ensuring comparability across them. This may include translating qualitative data to quantitative scales 

and standardizing numerical data (Eq.(3)). 

The TOPSIS method ranks variables (alternatives) based on their performance compared to ideal and anti-

ideal solutions. The TOPSIS procedure includes the following steps: 

I. Create the Decision Matrix (DM): Combine the normalized data into a DM, with each row representing an 

alternative technology and strategy and each column representing a criterion. 

II. Identify the ideal and anti-ideal solutions: Calculate the ideal and anti-ideal answers to each criterion. 

III. Calculate the euclidean distance: Find the distance between each alternative technology and strategy and 

the ideal and anti-ideal solutions. 

IV. Determine the relative closeness to the ideal solution: Using the formula, calculate how near each alternative 

technology and strategy is to the ideal solution as in Eq. (5). 

where, RCi represents the relative closeness of each alternative technology and strategy i to the ideal solution. 

d−(ideal) is the Euclidean distance from each alternative technology and strategy i to the ideal solution, and 

d+(Anti − ideal) is the Euclidean distance from each alternative technology and strategy i to the anti-ideal 

solution. The alternative technology and strategy i are then ranked based on their relative closeness to the 

ideal solution. Hybrid MCDM model integrates AHP and TOPSIS data to manage and evaluate the alternative 

technology and strategy i concerns in a manufacturing environment. This integration enables this study to 

examine the relative relevance of criteria (AHP) and the performance of the alternative technology and 

strategy i compared to ideal solutions (TOPSIS) in the decision-making process.  

Normalized Matrixij =
Dataij − Min(Dataj)

Max(Dataj) − Min(Dataj)
 . (4) 

RCi =
d−(ideal)

d−(ideal) + d+(Anti − ideal)
, (5) 
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  To collect data for the study, a Likert-style rating scale for future subjective assessments was proposed and it 

is shown in Table 1. This scale enables respondents to score the technologies against criteria in a consistent 

and standardized way. 

Table 1. Proposed 5-point rating scale for data collection. 

 

 

 

  

3|Results and Discussion  

This study is focused on the evaluation and ranking of seven technology alternatives that are central to  

sustainability of the manufacturing environment through IR4.0 and IR5.0, these technologies which include; 

IoT, AI, CPS, and smart robots, digital twin technology and human-robot Collaboration (Cobots) are 

designated as Tech A to Tech G and are evaluated in relation to their performance on ten criteria. These 

criteria included CO₂ emissions, energy efficiency, cost, job creation, social well-being, environmental impact, 

human rights, fair wages, flexibility, and user experience (UX). The DM, which consist of the raw performance 

for each technology with respect to the criteria, is presented in Table 2.  

 Table 2. Raw DM for Tech A–G on 10 sustainability criteria. 

 

 

 

 

 

In determining relative importance for each of the criteria, AHP was used to derive weights. Weights signify 

relative importance of each criterion to be used while making decisions toward sustainability. Developed 

weights are summarized in Table 3. 

 

Table 3. AHP-derived weights for the ten criteria. 

 

 

 

 

 

 

 

With the weights added, the second step was to normalize the raw DM so that unit inconsistencies are 

removed and all values are on the same scale. The normalized DM is shown in Table 4. 

Score Range Scale Value Interpretation 

65–69 1 Very Low Performance 
70–74 2 Low Performance 
75–79 3 Moderate Performance 
80–84 4 High Performance 
85–89 5 Very High Performance 

Technology CO₂ Energy Cost Jobs Wellbeing Impact Rights Wages Adapt UX 

Tech A 85 88 65 75 78 70 80 83 79 82 
Tech B 82 85 68 80 76 65 85 88 84 87 
Tech C 88 86 70 78 82 76 89 87 86 89 
Tech D 75 80 72 70 74 74 78 75 72 70 
Tech E 80 84 74 73 75 81 84 82 81 83 
Tech F 83 87 71 76 80 79 86 85 85 86 
Tech G 86 89 67 77 79 77 83 86 83 85 

Criteria Weight 

CO₂ Emission (CO2) 0.12 

Energy Efficiency (EE) 0.11 
Cost Efficiency (CE) 0.10 
Job Creation (JC) 0.10 
Wellbeing Impact (WB) 0.10 
Environmental Impact (EI) 0.10 
Human Rights (HR) 0.10 
Wages (WG) 0.10 
Climate Adaptability (AD) 0.09 
User Experience (UX) 0.08 
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  Table 4. Normalized DM. 

 

 

 

 

  

 

This normalized matrix was subsequently multiplied with the weight obtained from the AHP model to 

construct the weighted normalized DM, indicating both relative performance of all technologies and relative 

importance of each criterion. This matrix is presented in Table 5. 

Table 5. Weighted normalized DM. 

 

  

  

  

  

 

Using this weighted matrix, the TOPSIS procedure was utilized to make an assessment. TOPSIS identifies 

ideal and negative-ideal solutions, calculates each of the technologies' Euclidean distances from the ideal and 

negative-ideal solutions, and calculates a closeness coefficient. TOPSIS closeness coefficients and final 

rankings are reported in Table 6. 

  

Table 6. TOPSIS scores and rankings 

for technologies A–G. 

  

 

 

 

 

The results from the TOPSIS model show that the highest relative closeness value (0.8106) was with Tech C, 

which is the closest to the ideal solution, followed by Tech F (0.7531) and Tech G (0.6980) respectively. The 

three technologies excelled in comparison to most of the criteria and were the best runners. Technologies E 

and B were middling with closeness values of 0.5987 and 0.5514 respectively. These are quite strong 

performance-wise but there is room for improvement in areas like flexibility or cost.  

Technologies A and D ranked lowest, of which Tech D performed worst in closeness with a value of 0.2672. 

This was because it had relatively low performance on a group of environments and social scores. To validate 

these results and obtain a compromise perspective, VIKOR method was also employed. VIKOR evaluates 

alternatives in terms of best group utility and lowest individual regret. S, R, and Q scores, and rankings are 

shown in Table 7. 

 

 

Tech CO₂ Energy Cost Jobs Wellbeing Impact Rights Wages Adapt UX 

A 0.3880 0.3885 0.3528 0.3748 0.3791 0.3540 0.3615 0.3743 0.3661 0.3719 
B 0.3743 0.3752 0.3691 0.3998 0.3694 0.3287 0.3841 0.3968 0.3893 0.3945 
C 0.4017 0.3797 0.3800 0.3898 0.3986 0.3843 0.4022 0.3923 0.3986 0.4036 
D 0.3423 0.3532 0.3908 0.3498 0.3597 0.3742 0.3525 0.3382 0.3337 0.3174 
E 0.3651 0.3708 0.4017 0.3648 0.3646 0.4096 0.3796 0.3698 0.3754 0.3764 
F 0.3788 0.3841 0.3854 0.3798 0.3889 0.3995 0.3886 0.3833 0.3940 0.3900 
G 0.3925 0.3929 0.3637 0.3848 0.3840 0.3894 0.3751 0.3878 0.3847 0.3855 

Tech CO₂ Energy Cost Jobs Wellbeing Impact Rights Wages Adapt UX 

A 0.0466 0.0427 0.0353 0.0375 0.0379 0.0354 0.0362 0.0374 0.0330 0.0297 
B 0.0449 0.0413 0.0369 0.0400 0.0369 0.0329 0.0384 0.0397 0.0350 0.0316 
C 0.0482 0.0418 0.0380 0.0390 0.0399 0.0384 0.0402 0.0392 0.0359 0.0323 
D 0.0411 0.0388 0.0391 0.0350 0.0360 0.0374 0.0352 0.0338 0.0300 0.0254 
E 0.0438 0.0408 0.0402 0.0365 0.0365 0.0410 0.0380 0.0370 0.0338 0.0301 
F 0.0455 0.0422 0.0385 0.0380 0.0389 0.0399 0.0389 0.0383 0.0355 0.0312 
G 0.0471 0.0432 0.0364 0.0385 0.0384 0.0389 0.0375 0.0388 0.0346 0.0308 

Tech Score 

Tech C 0.8106 
Tech F 0.7531 
Tech G 0.6980 
Tech E 0.5987 
Tech B 0.5514 
Tech A 0.4981 
Tech D 0.2672 
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  Table 7. VIKOR scores (S, R, Q) and rankings for 

technologies A–G. 

  

 

 

 

 

Comparable to TOPSIS, Tech C was best in VIKOR (Q = 0.0000), again proving itself to be the most optimal 

and balanced option. Tech F (Q ≈ 0.0876) and Tech G (Q ≈ 0.3272) followed next, both again being part of 

the upper-class category. For the middle-class options, Tech E and Tech B were found to have a ranking of 

~0.4925 and ~0.5492 for the with Q values respectively. Tech D, again for the second time, was at the bottom 

(Q = 1.000), again confirming itself as a poor performer. From the results and comparative analysis above, 

the following can be deduced recommended;  

I. High correlation between TOPSIS and VIKOR rankings confirms good judgment. The first three top 

technologies (Tech C, F, and G) were consistently ranking high in a number of the sustainability factors and 

are to be given top priority for adoption or investment. 

II. Tech C, for example, was the best in terms of the reduction of CO₂, energy usage, and social aspects like fair 

compensation hence its suitability for programs that focused on sustainability.  

III. Tech F and G were also favorable through their affordability and versatility attributes. 

IV. On the other hand, Tech D was below-average performance on the majority of the criteria including UX, 

hence deserves to be remove now and reconsider in the future. Tech A has a lower-middle ranking; hence it 

can be suggested that it should be considered for upgrading rather than direct use. 

The succeeding ranking scheme is briefly presented in Table 8 and provides comparative rankings for all the 

technologies for both methods. 

 

Table 8. Comparative rankings of technologies using TOPSIS and VIKOR. 

 

 

 

 

 

 

4|Conclusions 

In this paper, attempt has been made to bridge the current research gap by addressing the increasing demands 

for the use of scientific and evidence-based approach to analyze the industry 4.0 and 5.0 technology based on 

its socio-economic as well as environmental sustainability. Despite the global popularity of the so-called 

emerging digital technologies such as AI, IoT, Big Data analytics, and CPS, studies have it that a wide gap still 

exists in MCDM analysis and exhaustive quantification of their impacts on sustainability along more than one 

dimension.  

In order to address this issue, an integrated MCDM model which include, AHP and Technique for Order 

Preference by Similarity to Ideal Solution (TOPSIS) and then cross-validated using the application of the 

Tech Q (Score) 

Tech C 0.0000 
Tech F 0.0876 
Tech G 0.3272 
Tech E 0.4925 
Tech B 0.5492 
Tech A 0.6179 
Tech D 1.0000 

Tech TOPSIS Score Tech VIKOR Q (Score) 

Tech C 0.8106 Tech C 0.0000 
Tech F 0.7531 Tech F 0.0876 
Tech G 0.6980 Tech G 0.3272 
Tech E 0.5987 Tech E 0.4925 
Tech B 0.5514 Tech B 0.5492 
Tech A 0.4981 Tech A 0.6179 
Tech D 0.2672 Tech D 1.0000 
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  VIKOR methodology was proposed. The ten of the following criteria were applied which were adopted as 

key to the sustainability criteria—CO₂ emissions, energy efficiency, cost efficiency, job creation, wellbeing, 

environmental impact, human rights, fair wages, climate adaptability, and user experience—to assess in detail 

the performance of seven emerging technologies (Tech A to Tech G) for different Industry 4.0 and 5.0 

configurations. 

Weights were assigned to all of the criteria based on their relative significance using AHP. For instance, CO₂ 

emissions were assigned a highest weight of 0.12, then energy efficiency with a weight of 0.11, and others 

equally weighted such as cost, jobs, wellbeing, and impact each with a weight of 0.10. These were based on 

expert opinion of increasing environmental and human-centered issues in future industrial revolutions. The 

decision-making process was begun by developing a DM from the simulated data of the actual performance 

scores for all the criteria for all the technologies. It was normalized and multiplied with the AHP weights 

developed to achieve the weighted normalized DM. It helped in having a balanced comparison of all the 

alternatives by equating different units into the same scale as well as relative importance of every criterion. 

The application of TOPSIS method allowed to determine closeness to a best solution (minimum cost, 

maximum benefit) for every technology and rank technologies in a decreasing order. The first place went to 

Tech C (0.8106), i.e., the improved composite sustainability performance. It was replaced by Tech F (0.7531), 

and then it was Tech G (0.6980). Technologies E (0.5987) and B (0.5514) were at midstream levels, while 

Tech A (0.4981) and Tech D (0.2672) were at lagging positions, which implies where they have to improve. 

To ensure TOPSIS stability results, VIKOR was utilized. VIKOR, working with ranking and compromise 

solutions, also provided Tech C as the optimal technology with the value of 0.0000 (or optimal solution). 

Tech F (0.0876) and Tech G (0.3272) also gave better ranks, validating the analysis. Tech D achieved the 

maximum VIKOR value of 1.0000 and gave worst performance among the sustainability criteria utilized. The 

overlap of VIKOR and TOPSIS rankings of the results verifies the validity of the proposed decision model. 

More importantly, technologies such as Tech C, as being strict implementations of IR5.0 technologies with 

integrated AI, IoT, Big Data, and human-centered design, strictly performed better than others in 

environmental sustainability, socio-economic effect, and user experience. 

Finally, the research could establish and verify a strong MCDM model for the analysis of nascent industrial 

technologies with regards to sustainability dimensions. The method is simple, replicable, and can be 

generalized for several industrial environments. The methodology enables decision-makers to classify 

technology in terms of cost-effectiveness, productivity and overall human and environmental worth which is 

central to IR5.0. The implications, therefore, involve imposing embracing holistic evaluation models so as to 

be in a place to push industries and policymakers toward more forward-thinking, sustainable, and equitable 

technological spaces. Future research can continue to evolve this model further in order to hone this model 

further with real-world evidence and the advice of experts and employ other Industry 5.0 technologies such 

as human digital twins and brain-computer interfaces with which it can continue to expand the boundaries of 

human-machine symbiosis in ecologically sustainable ways. 
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