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1|Introduction    

A common argument against a linear utility function for monetary returns is that an agent with such a utility 

function would have no incentive to insure himself against possible loss. However, this argument seems to 

collapse if the linear utility function for monetary returns is state-dependent. The probability of the gain or 

loss is spelled out as the probability of the state of nature (son) in which there is the gain or loss, with the 

constant marginal utility of monetary returns in the "worse" state being more than the constant marginal 

utility of money in the better state. 

The seminal contribution of Kahneman and Tversky [1] noted the experimentally verified observation that 

agents tend to have a marginal utility of loss that is no less- if not higher than the marginal utility of gain, so 
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  that a typical utility function for monetary returns u:ℝ→ ℝ may be of the form u(x) = u+max{x,0} + u-

min{x,0} with u-  u+ > 0. This phenomenon is known as "loss aversion". Thus, any utility function of this 

form can be represented by a pair of real numbers (u-, u+) where u-  u+ > 0. Allowance is made for the 

possibility of u- = u+.  

The work of Friedman and Savage [2] clearly spells out that, beginning with an initial segment where the 

utility function for wealth is concave, the utility function alternates between convexity and concavity 

thereafter. This property of utility functions for wealth is the "Friedman-Savage" hypothesis. In [3], a utility 

function for wealth (expressed in terms of gains and losses) has been suggested as compatible with "loss 

aversion" as well as the "Friedman-Savage" hypothesis. However, the utility function in Lahiri [3] does not 

display constant average utility in any subinterval of its domain, and this is a problem for reasons that we now 

address.  

Ramsey and de Finetti's dominant interpretation of probability in expected utility theory is that of Lahiri [4], 

[5], which provides brief discussions and intuitive motivations for such probabilities. The Ramsey-de Finetti 

subjective probability of an "event" or "state of nature" (say E) that an agent assesses is the price (say P) that 

the agent would be willing to pay for a simple bet that returns one unit of money if the state of nature 'E' 

occurs and nothing otherwise so that the expected monetary value of the simple bet to the agent is zero. 

Thus, if the average utility of money in state of nature E is a constant, say  > 0, then for one unit of money 

in state of nature E, the agent will be willing to forego p units of utility and for  units of money in state of 

nature E the agent will be willing to forego p units of utility, the latter being the utility the agent willingly 

forgoes for  simple bets of the type we have just discussed.  simple bets, each of which returns one unit of 

money if E occurs and nothing otherwise, are identical to a bet that returns  unit of money if E occurs and 

nothing otherwise. Thus, Ramsey-de Finetti subjective probability fits comfortably with "expected utility 

theory" based on constant average state-dependent utility. On the other hand, if the average utility in the state 

of nature E is "non-constant", then there exists  such that the average utility of  units of money is not equal 

to the average utility of p units of money. For a bet that returns  units of money in the state of nature E 

and nothing otherwise, the agent will be "willingly preceding" the utility of p units of money and not 'p' 

times the utility of  units of money, the latter being the expected utility of the bet to the agent. Hence, there 

seems to be a mismatch between Ramsey-de Finetti's subjective probability and expected utility theory based 

on such an interpretation of the state-dependent average utility of money as "non-constant". A comprehensive 

exposition of the early stages of analyzing decision-making under uncertainty with state-dependent 

preferences is available in [6]. However, the significance of state-dependent linear utility functions for money 

is that they fit comfortably with the expected utility concept based on Ramsey-de Finetti's probabilities. Thus, 

Ramsey-de Finetti probabilities and expected utilities are "perfectly economically consistent" with state-

dependent linear utility functions for money.  

In the next section of the paper, we motivate our discussion in the subsequent sections by considering a "toy 

model" of insurance against a risky loss. We apply expected state-dependent linear utility analysis in this model 

and show that insurance is possible under state-dependent "risk neutrality". The third section presents the 

formal framework for "expected utility theory with state-dependent linear utility functions for monetary 

returns". Using concepts introduced in this section, in subsequent sections, we introduce "first-order 

stochastic dominance", "mean-preserving spread", "increasing-concave linear utility profiles", and "risk 

aversion". Applying the expected utility theory developed here, we analyze the contract a monopolist would 

offer in an insurance market that allows for partial loss coverage.  

Our final endeavour concerns amplifying ideas implicit in "increasing-concave linear utility profiles". We 

define a utility function for monetary wealth that, in a certain sense, reconciles state-dependent constant 

average utility of money with "loss aversion" and the "Friedman-Savage" hypothesis. As an immediate 

consequence of such a utility function, we obtain a profile of state-dependent linear utility functions for 

monetary wealth, where states of nature correspond to intervals in which monetary wealth may occur. The 
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  intervals are mutually disjoint, and an interval corresponding to greater monetary wealth has a lower positive 

average utility of monetary wealth. 

We hope that this paper will provide an incremental impetus for the further development of decision analysis 

with linear utility functions for money. 

2|Motivation-Insuring Against Risky Loss 

Consider a situation with two states of nature 1,2, where an agent with initial wealth w > 0 may face a loss of 

L(0, w) units of money in the second son. Let p(0,1) be the probability of loss. Suppose that his utility 

function for monetary returns in Son i is a function of the above form with (ui
−, ui

+) being the slopes for 

losses and gains respectively in Son 'i'. 

There are two ways in which insurance can be introduced in this setting. First is a variation of the traditional 

textbook setting where we assume u2
− > u1

−. Even an individual unaffected by the loss would react to the news 

by leaning closer towards caution and hence a higher marginal utility of money than in the absence of such 

news. However small the difference in the marginal utilities may be. If one hears about frequent bicycle thefts 

in the neighbourhood that one lives in, then the same person is likely to be concerned more about the safety 

of their bicycle than they would be in the absence of such news, regardless of whether the person has been a 

victim of such theft or not. The difference gets more pronounced for an agent with a stake in the loss.    

In the absence of an insurance policy, the expected utility of the agent is – pu2
−L. An insurance policy that 

provides complete coverage is available for a premium  which, if actuarily fair, would satisfy  = pL. 

The expected utility from buying this policy is -[(1-p) u1
− + pu2

−] = -p[(1-p) u1
− + pu2

−]L. Since u2
− > u1

−> 0 

and p(0,1), (1-p) u1
− + pu2

− < u2
− and so -p[(1-p) u1

− + pu2
−]L > – pu2

−L.   

Actually, it would be more realistic to consider three sons: 1) where there is no loss, 2) where there is a loss 

and the agent has not bought the insurance policy, and 3) where there is a loss and the agent has bought the 

insurance policy, with u2
− > u3

− > u1
−> 0, since having bought the insurance policy, the agent is somewhat 

more relaxed than they would have been had they not purchased it. Still, since recovering the insurance 

payment involves some transaction cost (e.g., paperwork, etc.), the agent's disutility from expenditure incurred 

on buying the premium could be expected to be higher than what it would have been had there been no loss.      

A second way in which insurance can be introduced in this context, which may be more realistic, is to assume 

that the seller of the insurance policy has recourse to an investment opportunity, which for some r > 0, returns 

1 + r units of money for every unit of money invested in the current period. In this case, we can weaken the 

restriction on the slopes of the utility functions and assume u2
−  u1

−, i.e., allow for u2
− = u1

−. 

In this case, an insurance policy that provides complete coverage for a premium , yields an expected return 

of (1+r)-pL to the seller of the insurance policy, which is non-negative if   
pL

1+r
. Since r > 0, 

pL

1+r
 < pL, so 

that the seller of the policy can make a profit by selling it for a premium (
pL

1+r
, pL).  

In this case, the expected utility from buying this policy for a premium of  is -[(1-p) u1
−+ pu2

−] and -[(1-p) 

u1
− + pu2

−] > – pu2
−L, since 0 < (1-p) u1

− + pu2
−  u2

− and  < pL.    

Now let us consider an agent whose initial monetary wealth is w > 0 and an investible amount I(0,w) can 

either be diversified equally between two risky investment opportunities or invested entirely in one investment 

opportunity, with each investment opportunity having a probability p(0,1) of failing. 

This is a situation where there are three states of nature denoted by 1, 2, 3, with (ui
−, ui

+) being the slopes for 

losses and gains respectively in son 'i'> 0. Son 1 is the situation where neither investment opportunity fails, 

Son 2 is where 50% of the invested amount is lost, and Son 3 is where the entire invested amount is lost. 

Suppose 0 < u1
− < u2

− < u3
−. 
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  Even if the agent were not an investor, the news of an investment opportunity crashing would likely increase 

expenditure disutility. Such disutility would increase if it heard the news of two investment opportunities 

crashing simultaneously. In the case of an investor, the effect of such news is likely to be more pronounced.    

If the agent invests the entire amount I in exactly one investment opportunity, then his expected utility is – 

pu3
−I. 

If the agent spreads his investment opportunity equally between the two investment opportunities, then his 

expected utility is -2p(1-p) u2
− I

2
 - p2u3

−I = -p[(1-p) u2
− + pu3

−]I. 

Since u3
− > (1-p) u2

− + pu3
−, we have -p[(1-p) u2

− + pu3
−]I > – pu3

−I, and hence, there is always an incentive for 

"spreading risks".  

3|The Framework of Analysis 

Let us set up the general analysis framework with linear utility functions for monetary returns. One may refer 

to Bonanno [7] for a more general analysis framework. 

For some positive integer L  2, let {1, 2, …, L} denote the finite set of states of nature. 

A (column) vector xℝL where for each j{1,…, L}, the jth coordinate of x denotes the monetary return in 

son j, is said to be a return vector. 

A (column) vector pℝ++
L  satisfying ∑ pj

L
j=1  = 1, such that for j{1,…,L}, pj > 0 is the probability of 

occurrence of son j, is a probability vector. Given x, yℝL, let yTx denote ∑ yjxj
L
j=1 .  

A portfolio of risky assets (briefly referred to as a pora) is a pair (x, p) where x is a return vector and p is a 

probability vector.   

Given a pora (x, p) with X denoting the random monetary return for (x, p) and ℝ, let {X = } denote the 

event that the realized son yields a monetary return of , {X  } denote the event that the realized son 

yields a monetary return less than or equal to , {X  } denote the event that the realized son yields a 

monetary return greater than or equal to , {X < } denote the event that the realized son yields a monetary 

return less than , {X > } denote the event that the realized son yields a monetary return greater than . 

Thus, for all ℝ, Probability of {X  } = 1- Probability of {X > }. The expected value of a pora (x, p) 

denoted E(x, p) is pTx = ∑ pj
L
j=1 xj.  

A linear utility profile is a vector uℝ++
L  such that the trader's (Bernoulli) utility for monetary returns (gains 

or losses) in son j{1, …., L} is uj for all real numbers , with  denoting the monetary return in son j.  

Given a linear utility profile  and a pora (x ,p) the expected utility of (x, p) for u, denoted by Eu(x, p) is 

∑ pjuj
L
j=1 xj. 

Clearly Eu(x, p) = p1(u1x1 – u2x2) + (p1 + p2)(u2x2 – u3x3) + (p1 + p2 + p3)(u3x3 – u4x4) + … + (p1 + 

… + pL-1)(uL-1xL-1 – uLxL) + (p1 + p2 + … + pL)xL =  ∑ (∑ pk)
j
k=1 (uj

L−1
j=1 xj − uj+1xj+1 ) + (∑ pk)L

k=1 uLxL. 

Given a linear utility profile  and a pora (x,p), the certainty equivalent of (x,p) for u, denoted by CE(u, x, p), 

is the scalar that satisfies [CE(u, x, p)]pTu = Eu(x, p). 

Suppose that (x, p) is a pora satisfying xj < xj+1 for all j{1, …, L-1}.Then, for all k{1, …, L-1} and , 

(xk, xk+1), Probability of {X > } = Probability of {X > xk} = Probability of {X > } and Probability 

of {X  } = Probability of {X  xk} = Probability of {X  }. 
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4|First Order Stochastic Dominance 

Given two poras (x, p) and (y, q), with X denoting the random monetary return for (x, p) and Y denoting the 

random monetary return for (y, q), we say that (x, p) stochastically dominates (y, q) in the first order, denoted 

by (x, p) >FSD (y,q) if for all ℝ, Probability of {X > }  Probability of {Y > } and for some ℝ, 

Probability of {X > } > Probability of {Y > }. 

The intuitive interpretation of (x, p) >FSD (y,q) is that given any monetary return , the probability that the 

monetary return from (x, p) is greater than  is greater than or equal to the probability that the monetary 

return from (y, q) is at greater , and for some monetary return the first probability is strictly greater than the 

second probability i.e., (x, p) is consistently more likely to yield better rewards better than (y, q).    

We know that for a linear utility profile and a pora (x, p), Eu(x, p) = ∑ (∑ pk)
j
k=1 (uj

L−1
j=1 xj − uj+1xj+1 ) + 

(∑ pk)L
k=1 uLxL. 

Proposition 1. Let (x, p) and (x, q) be two poras satisfying xj < xj+1 for all j{1, …, L-1}. Then (x, p) >FSD 

(x, q) if and only if [Eu(x, p) > Eu(x, q) for all linear utility profile u satisfying ujxj < uj+1xj+1 for all j{1, 

…, L-1}]. 

Proof: Eu(x, p) – Eu(x, q) = [∑ (∑ pk)
j
k=1 (uj

L−1
j=1 xj − uj+1xj+1 ) + (∑ pk)L

k=1 uLxL] – [∑ (∑ qk)
j
k=1 (uj

L−1
j=1 xj −

uj+1xj+1 ) + (∑ qk)L
k=1 uLxL] = ∑ (∑ pk − ∑ qk

j
k=1 )

j
k=1 (uj

L−1
j=1 xj − uj+1xj+1 ) + (∑ pk − ∑ qk

L
k=1 )L

k=1 uLxL = 

∑ (∑ pk − ∑ qk
j
k=1 )

j
k=1 (uj

L−1
j=1 xj − uj+1xj+1), since ∑ pk = 1 = ∑ qk

L
k=1 )L

k=1 . 

Suppose (x, p) >FSD (x, q). Then, ∑ pk − ∑ qk
j
k=1

j
k=1   0 for all j{1, …, L}, with strict inequality for at least 

one j{1, …, L-1}, since ∑ pk = 1 = ∑ qk
L
k=1

L
k=1 .  

If u is a linear utility profile satisfying ujxj<uj+1xj+1 for all j{1, …, L-1}, then ∑ (∑ pk −
j
k=1

L−1
j=1

∑ qk
j
k=1 ) (uj xj − uj+1xj+1 ) > 0. Thus, Eu(x, p) – Eu(x, q) > 0, i.e., Eu(x, p) > Eu(x, q). 

Now suppose that it is not the case that (x, p) >FSD (x, q). Thus, {j{1, …, L-1}| ∑ pk − ∑ qk
j
k=1

j
k=1  > 0} 

 . Let  = min{∑ pk − ∑ qk
j
k=1

j
k=1 | ∑ pk − ∑ qk

j
k=1

j
k=1 > 0}. 

Let u1 = 1. Having defined uj > 0, let uj+1 > 0 be such that uj+1xj+1 – ujxj = 
2


 if ∑ pk − ∑ qk

j
k=1

j
k=1  > 0 

and 
1

2L
 > uj+1xj+1 – ujxj > 0, otherwise. This is possible since xj+1 > xj implies that it is not possible for 

both xj+1 and xj to be zero. Thus, Eu(x, p) – Eu(x, q) = - 
2


∑ ∑ pk −h

k=1h{{j{1,…,L−1}|  ∑ pk−∑ qk
j
k=1

j
k=1

 > 0}

∑ qk
h
k=1  +∑ (∑ pk − ∑ qk)h

k=1
h
k=1h{{j{1,…,L−1}| ∑ pk−∑ qk

j
k=1

j
k=1

  0}
(uhxh- uh+1xh+1) =  

−
2


∑ ∑ pk − ∑ qk

h
k=1

h
k=1h{{j{1,…,L−1}| ∑ pk−∑ qk

j
k=1

j
k=1

 > 0}
 + ∑ (∑ qk −h

k=1h{{j{1,…,L−1}| ∑ pk−∑ qk
j
k=1

j
k=1

  0}

∑ pk)h
k=1 (uh+1xh+1- uhxh)   -2 + (L-1) 

1

2L
  -2 +  

1

2
 = -  

3

2
 < 0. 

Thus, [Eu(x, p) > Eu(x, q) for all linear utility profile u satisfying ujxj < uj+1xj+1 for all j{1, …, L-1}] 

implies (x, p) >FSD (x, q). Q.E.D. 

5|Mean-Preserving Spread and Increasing-Concave Linear Utility 

Profiles 

For this section, assume L  3. Given a return vector x satisfying xj < xj+1 for all j{1, …, L-1}, a linear 

utility profile u is said to be increasing-concave with respect to x, if for all j{1, …, L-1}, ujxj < uj+1xj+1 

and for all i, j, k{1, 2, …, L} with i < j < k, ujxj > (1-)uixi + ukxk where (0,1) satisfies xj = (1-)xi + 

xk. Clearly,  = 
xj−xi

xk−xi
  and 0 < xj – xi < xk – xi. 
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  Given a return vector x satisfying xj < xj+1 for all j{1, …, L-1}, pora (x, q) is said to be obtained by a mean-

preserving spread from pora (x, p), denoted (x, p) →MSP (x, q), if E(x, p) = E(x, q) and there exists i, j, k{1, 

2, …, L} satisfying i < j < k such that qi > pi, qj < pj, qk > pk and ph = qh for h{1, 2, …, L}\{i,j,k}. 

[E(x, p) = E(x, q) and there exists i, j, k{1, 2, …, L} satisfying i < j < k such that qi > pi, qj < pj, qk > pk 

and ph = qh for h{1, 2, …, L}\{i,j,k}] if and only if [there exists i, j, k{1, 2, …, L} satisfying i < j < k 

such that qi > pi, qj < pj, qk > pk, ph = qh for h{1, 2, …, L}\{i,j,k} and (pj-qj)xj = (qi- pi)xi + (qk – pk)xk], 

[there exists i, j, k{1, 2, …, L} satisfying i < j < k such that qi > pi, qj < pj, qk > pk and ph = qh for h{1, 

2, …, L}\{i,j,k}and (pj-qj)xj = (qi- pi)xi + (qk – pk)xk] is equivalent to [there exists i, j], k{1, 2, …, L} 

satisfying i < j < k such that qi > pi, qj < pj, qk > pk, ph = qh for h{1, 2, …, L}\{i,j,k} and xj = 
qi−pi

pj−qj
 xi + 

qk−pk

pj−qj
xk]. 

Thus, (x, p) →MSP (x, q) if and only if [there exists i, j, k{1, 2, …, L} satisfying i < j < k such that qi > pi, 

qj < pj, qk > pk, ph = qh for h{1, 2, …, L}\{i,j,k} and xj = 
qi−pi

pj−qj
 xi + 

qk−pk

pj−qj
xk].  

Proposition 2. Let (x, p) and (x, q) be two poras satisfying xj < xj+1 for all j{1, …, L-1}. 

I. If (x, p) →MSP (x, q), then [Eu(x, p) > Eu(x, q) for all linear utility profile u which is increasing-concave 

with respect to x]. 

II. If L = 3, p2  q2 and [Eu(x, p) > Eu(x, q) for all linear utility profile u which is increasing-concave with 

respect to x] then (x, p) →MSP (x, q).  

Proof: Suppose (x, p) →MSP (x, q) and let u be an increasing-concave linear utility profile with respect to x. 

Hence, there exists i, j, k{1, 2, …, L} satisfying i < j < k such that qi > pi, qj < pj, qk > pk and ph = qh for 

h{1, 2, …, L}\{i,j,k}and (pj-qj)xj = (qi- pi)xi + (qk – pk)xk] is equivalent to [there exists i, j, k{1, 2, …, 

L} satisfying i < j < k such that qi > pi, qj < pj, qk > pk, ph = qh for h{1, 2, …, L}\{i,j,k} and xj = 
qi−pi

pj−qj
 

xi + 
qk−pk

pj−qj
xk. 

However, xj = (1-)xi + xk where  = 
xj−xi

xk−xi
(0, 1). Further, pi + pj + pk = qi + qj + qk implies pj – qj = 

(qi – pi) + (qk – pk). Thus, 
qi−pi

pj−qj
 + 

qk−pk

pj−qj
 = 1, with 

qi−pi

pj−qj
 > 0 and 

qk−pk

pj−qj
 > 0. Hence, 

qk−pk

pj−qj
 =  and 

qi−pi

pj−qj
 = 1- . 

Since u is increasing-concave ujxj > (1-)uixi + ukxk. Thus, (pj – qj)ujxj > (qi – pi)uixi + (qk – pk)ukxk, i.e., 

piuixi + pjujxj + pkukxk > qiuixi + qjujxj + qkukxk. Since, ph = qh for h{1, 2, …, L}\{i,j,k}, we get Eu(x, 

p) > Eu(x, q). 

Now suppose L = 3 and x1 < x2 < x3 and p2  q2. We have p1 + p2 + p3 = q1 + q2 + q3 = 1. 

Suppose, E(x, p) = E(x, q). Thus, p1x1 + p2x2 + p3x3 = q1x1 + q2x2 + q3x3. 

Suppose, Eu(x, p) > Eu(x, q) for all linear utility profiles satisfying u1x1 < u2x2 < u3x3 and u2x2 > (1-)u1x1 

+ u2x3, where x2 = (1-)x1 + x3. 

Since p2 – q2  0, (p2-q2)x2 = (q1 – p1)x1 + (q3 – p3)x3 implies x2 = 
q1−p1

p2−q2
x1 + 

q3−p3

p2−q2
x3 = 

q1−p1

p2−q2
x1 + 

(1−q1−q2)−(1−p1−p2) 

p2−q2
x3 = 

q1−p1

p2−q2
x1 + 

(p2−q2)−(q1−p1) 

p2−q2
x3 = x3 - 

q1−p1

p2−q2
(x3 – x1), i.e., x2 = x3 - 

q1−p1

p2−q2
(x3 – x1). x2 < 

x3 and x3 > x1 implies 
q1−p1

p2−q2
 > 0. 

Similarly, x2 = 
q1−p1

p2−q2
x1 + 

q3−p3

p2−q2
x3 = 

(1−q2−q3)−(1−p2−p3) 

p2−q2
x1 + 

q3−p3

p2−q2
x3 = 

(p2−q2)−(q3−p3) 

p2−q2
x1 + 

q3−p3

p2−q2
x3 = x1 + 

q3−p3

p2−q2
(x3 – x1). x2 > x1 and x3 > x1 implies 

q3−p3

p2−q2
 > 0. 
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  Thus, x2 = 
q1−p1

p2−q2
x1 + 

q3−p3

p2−q2
x3, x2 = (1-)x1 + x3,  > 0, 1-  > 0, 

q3−p3

p2−q2
 > 0, 

q1−p1

p2−q2
 > 0 and x1 < x2 < x3 

implies  = 
q3−p3

p2−q2
 and 1-  = 

q1−p1

p2−q2
. Thus, u2x2 >

q1−p1

p2−q2
u1x1 + 

q3−p3

p2−q2
u3x3. 

If p2 < q2, then (p2-q2)u2x2 < (q1- p1)u1x1 + (q3 – p3)u3x3 and thus, Eu(x, p) = p1u1x1 + p2u2x2 + 

p3u3x3 < q1u1x1 + q2u2x2 + q3u3x3 = Eu(x, q), leading to a contradiction. 

Thus, it must be the case that p2 > q2. Hence, 
q1−p1

p2−q2
 > 0 implies q1 > p1 and 

q3−p3

p2−q2
 > 0 implies q3 > p3. Thus, 

we have (x, p) →MSP (x, q). Q.E.D. 

Note: The proof of part II in Proposition 2 can likely be extended to L > 3.  

 6|Risk Aversion 

Given a pora (x, p), an agent with a linear utility profile u is said to be: 

I. Risk averse relative to (x,p) if E(x, p) > CE(u, x, p).  

II. Risk neutral relative to (x,p) if E(x, p) = CE(u, x, p). 

III. Risk-loving/seeking relative to (x, p) if E(x, p) < CE(u, x, p). 

Example 1. Let L = 2, u1 = 1 and u2 = 2. 

Let (x, p) = ((2,0), (
1

2
, 

1

2
)). Thus, E(x, p) = 1. 

In this case, Eu(x,p) = 1 and pTu = 
3

2
, so that CE(u, x, p) = 

2

3
 < 1 = E(x,p). Thus, the agent is risk averse 

relative to ((2,0), (
1

2
, 

1

2
)). 

Now let (x, p) = ((0,2), (
1

2
, 

1

2
)). Once again, E(x, p) = 1.  

Now, Eu(x,p) = 2 and since pTu = 
3

2
, we have CE(u, x, p) = 

4

3
 > 1 = E(x, p). Thus, the same agent is risk-

loving/seeking relative to ((0,2), (
1

2
, 

1

2
)).  

Now suppose (x, p) = ((1,1), (
1

2
, 

1

2
)). Once again, E(x, p) = 1. 

Now, Eu(x,p) = 
3

2
 and since pTu = 

3

2
, we have CE(u, x, p) = 1 = E(x, p). Thus, the same agent is now risk 

neutral relative to ((1,1), (
1

2
, 

1

2
)).  

Given a pora (x,p) and a linear utility profile u, the risk premium relative to (x,p) denoted R(u, x, p) = E(x, p) 

– CE(u, x, p). Thus, ∑ pjuj
L
j=1 (E(x, p) − R(u, x, p)) = ∑ pjuj

L
j=1 CE(u, x, p) = Eu(x, p). 

If the agent is: 

I. Risk averse relative to (x, p), then R(u, x, p) > 0. 

II. Risk-loving/seeking relative to (x, p), then R(u, x, p) < 0. 

III. Risk neutral relative to (x, p), then R(u, x, p) = 0.  

Given two linear utility profiles, u, v, and two poras (x, p), (y, q), we say that u relative to (x, p) is more risk 

averse than v relative to (y, q) if R(u, x, p) > R(v, y, q).   

7|Insurance Contracts with the Possibility of Partial Coverage 

As before, consider a situation with two states of nature, 1, 2, where an agent with initial wealth w > 0 may 

face a loss of L(0, w) units of money in the second son. Let p(0,1) be the probability of loss. Suppose the 

agent's linear utility profile is (u1, u2) with 0 < u1 < u2. 

The expected value of the "risk" is -pL. 
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  In the absence of an insurance policy, the agent's expected utility is – pu2L. 

If CE1 is the certainty equivalent without an insurance policy, then [(1-p)u1 + pu2]CE1 = -pu2L. Thus, CE1 

= 
−pu2L

(1−p)u1+pu2
 = -pL

u2

(1−p)u1+pu2
. 

An insurance policy with a deductible d[0, L) (i.e., in case of loss, the insurer pays L-d to the agent) is 

available for a premium . 

Hence, the expected profit of the insurer is  - p(L-d). For the insurer to voluntarily sell the insurance, it must 

be "profitable", i.e.,  - p(L-d)  0. 

Thus, profitability is equivalent to the condition - pL  - ( + pd). 

The expected value of this policy to the agent is – ( + pd). 

The expected utility of the agent from buying this policy is -(1-p)u1 - pu2( + d) = -[(1-p)u1 + pu2] - pu2d. 

For the agent to voluntarily buy the insurance, it must be the case that -[(1-p)u1 + pu2] - pu2d  – pu2L, 

i.e., - -  
u2

(1−p)u1+pu2
 pd  CE1, - -  

u2

(1−p)u1+pu2
 pd = – ( + pd) + pd[ 1- 

u2

(1−p)u1+pu2
]. Thus, the agent will 

voluntarily by the insurance policy if and only if  - ( + pd) + pd[ 1- 
u2

(1−p)u1+pu2
]  CE1.  

A profit-maximizing insurer will choose an insurance contract, i.e., a pair (, d) that  

The above problem is equivalent to choosing a pair (, d) that  

It is easy to see that at an optimal solution, [(1-p)u1 + pu2] + pu2d = pu2L. Thus,  = 
pu2(L−d)

(1−p)u1+pu2
. Thus,  

+ pd = p[
u2(L−d)

(1−p)u1+pu2
 + d] = pd[1 - 

u2

(1−p)u1+pu2
] + 

pu2L

(1−p)u1+pu2
. 

Since u2 > u1, we have 
u2

(1−p)u1+pu2
 > 1 and hence 1 - 

u2

(1−p)u1+pu2
 < 0. 

Thus, pd[1 - 
u2

(1−p)u1+pu2
] + 

pu2L

(1−p)u1+pu2
 is maximized at d = 0, thereby implying  = 

pu2L

(1−p)u1+pu2
. 

Since 
pu2L

(1−p)u1+pu2
 = (

u2

(1−p)u1+pu2
)pL and  

u2

(1−p)u1+pu2
 > 1, we have  > pL. Since d = 0,  + pd > pL. 

Hence, the optimal contract is the pair (
pu2L

(1−p)u1+pu2
, 0), with the "expected profit of the insurer" being 

pu2L

(1−p)u1+pu2
 – pL = pL(

u2−(1−p)u1−pu2

(1−p)u1+pu2
) = 

p(1−p)(u2−u1)L

(1−p)u1+pu2
 > 0.   

Note:  = 
pu2(L−d)

(1−p)u1+pu2
 implies - -  

u2

(1−p)u1+pu2
 pd = - 

pu2L

(1−p)u1+pu2
 = CE1. 

We know that - -  
u2

(1−p)u1+pu2
 pd = - ( + pd) + pd[ 1- 

u2

(1−p)u1+pu2
]. Thus, at an optimal solution - ( + pd) 

+ pd[ 1- 
u2

(1−p)u1+pu2
] = CE1. 

Strict Profitability is equivalent to the condition - pL > - ( + pd), which now reduces to -pL + pd[ 1- 
u2

(1−p)u1+pu2
] > CE1 = - 

pu2L

(1−p)u1+pu2
. 

Maximizes  −  p(L − d), 

s. t.   −  p(L − d)  0, −[(1 − p)u1 +  pu2] −  pu2d  −  pu2L and d[0, L). 

 

Maximizes  +  pd, 

s. t.   +  pd  pL, [(1 − p)u1 +  pu2] +  pu2d  pu2L and d[0, L). 
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  Thus, strict profitability is equivalent to -pL[1- 
u2

(1−p)u1+pu2
] + pd[1-- 

u2

(1−p)u1+pu2
] > 0, i.e. p(d-L)[1- 

u2

(1−p)u1+pu2
] 

 0.  

Since d[0, L), this is possible if and only if 1- 
u2

(1−p)u1+pu2
 < 0, i.e., 1 < 

u2

(1−p)u1+pu2
.  

Multiplying throughout by pL, which is strictly positive, we get 1 < 
u2

(1−p)u1+pu2
 if and only if  pL < 

u2

(1−p)u1+pu2
pL, the latter being equivalent to - 

u2

(1−p)u1+pu2
pL < -pL. 

Since CE1 = - 
u2

(1−p)u1+pu2
pL and -pL are the expected value of the risk. Thus, Strict Profitability is equivalent 

to the requirement that the agent is risk averse relative to ((-L, 0), (p, 1-p)).   

Let us now consider the somewhat more realistic situation with three sons: 1) where there is no loss, 2) where 

there is a loss and the agent has not bought the insurance policy, and 3) where there is a loss and the agent 

has bought the insurance policy, with u2 > u3 > u1 > 0. 

Then, the expected utility of the agent from buying this policy is -(1-p)u1 - pu3( + d) = -[(1-p)u1 + pu3] 

- pu3d. 

Since u2 > u3, -(1-p)u1 - pu3( + d) > -(1-p)u1 - pu2( + d). 

A profit-maximizing insurer will choose an insurance contract, i.e., a pair (, d) that 

The above problem is equivalent to choosing a pair (, d) that  

It is easy to see that at an optimal solution, [(1-p)u1 + pu3] + pu3d = pu2L. Thus,  = 
p(u2L−u3d)

(1−p)u1+pu3
. Thus,  

+ pd = p[
u2L−u3d

(1−p)u1+pu3
 + d] = pd[1 - 

u3

(1−p)u1+pu3
] + 

pu2L

(1−p)u1+pu3
.  

Since u3 > u1, we have 
u3

(1−p)u1+pu3
 > 1 and hence 1 - 

u3

(1−p)u1+pu3
 < 0. Thus, pd[1 - 

u3

(1−p)u1+pu3
] + 

pu2L

(1−p)u1+pu3
 

is maximized at d = 0, thereby implying  = 
pu2L

(1−p)u1+pu3
 > 

pu2L

(1−p)u1+pu2
 , since u3 < u2. 

Since  
pu2L

(1−p)u1+pu3
 = (

u2

(1−p)u1+pu3
)pL and  

u2

(1−p)u1+pu3
 > 

u2

(1−p)u1+pu2
 > 1, we have  > 

pu2L

(1−p)u1+pu2
 pL. Since d = 

0,  + pd > 
pu2L

(1−p)u1+pu2
 > pL. 

Hence, the optimal contract is the pair (
pu2L

(1−p)u1+pu3
, 0), with the expected profit of the insurer being  

pu2L

(1−p)u1+pu3
 

– pL = pL(
u2−(1−p)u1−pu3

(1−p)u1+pu2
) > 

p(1−p)(u2−u1)L

(1−p)u1+pu2
 > 0. Thus, the expected profit of the insurer is higher in this more 

realistic situation than in the earlier situation. 

8|Almost Linear Utility Function for Monetary Wealth 

For a non-negative integer n, let <u2j| j{0, …, n}> be a finite sequence of positive real numbers satisfying 

u2(j+1) < u2j if n > 0. 

If n > 0, let N = 2n and let <xj| j{0, 1, .., N}> be a finite sequence of non-negative real numbers satisfying: 

I. x0 = 0, (ii) xj+1 > xj, for all j{0, .., N-1}. 

Maximizes  −  p(L − d), 

s. t.  −  p(L − d)  0, −[(1 − p)u1 +  pu3] −  pu3d  −  pu2L and d[0, L]. 
 

Maximizes  +  pd, 

s. t.  +  pd  pL, [(1 − p)u1 +  pu3] +  pu3d  pu2L and d[0, L]. 
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  II. For all j{0, …, n-1}, u2jx2j+1  u2j+2x2j+2. 

Let u: ℝ+→ℝ be the function defined thus: 

I. If n = 0, then let u(x) = u0x for all xℝ+. 

II. If n > 1, then for j{0, …, n-1}, let u(x) = u2jx for all x[x2j, x2j+1], u(x) = u2jx2j+1 + (x- 

x2j+1)
u2j+2x2j+2− u2jx2j+1

x2j+2−x2j+1
 for all x[x2j+1, x2j+2], and u(x) = u2nx for all x  xN. 

We will refer to such a function u as an Almost Linear Utility (ALU) function for monetary wealth. 

Note: Compatibility with an ALU function with loss aversion requires that n > 0 and the initial wealth is at 

x2j-1 for some j{0, …, n}. If we require compatibility with the "Friedman-Savage" hypothesis, we require 

n > 1.  

9|State-Dependent Linear Utility Functions for Monetary Wealth 

In the context of the ALU function defined in the previous section:  

I. If n = 0, then the average utility of monetary wealth is the positive constant u0 for all xℝ+.  

II. If n > 0, then the average utility of monetary wealth is a positive constant u2j in the interval [x2j, x2j+1] for 

all j{0, …, n-1} and is the positive constant u2n for x  xN.  

If n > 0, then for j{0, …, n- 1}, let Ej = [x2j, x2j+1] and let En = [x2n, + ).  

Let X = ⋃ Ej
n
j=0 be the sample space. {E1, …, En} can be considered a collection of n mutually exclusive 

events (or states of nature), each of which the average utility of money is a constant. For j{0, …, n- 1}, let 

u(.|Ej): Ej → ℝ be the function such that for all xEj, u(x|Ej) = ujx. The L-tuple (u(.|E0), …, u(.|En)) is a 

profile of state-dependent linear utility functions for monetary wealth. 
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