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1|Introduction    

The Transportation Problem (TP) is a foundational optimization problem in operations research, widely used 

in logistics and supply chain management to determine the most cost-effective way to distribute goods from 

multiple suppliers to multiple consumers while meeting supply and demand constraints [1], [2]. Traditionally, 

this problem has focused on minimizing transportation costs—commonly called the traditional TP [3]. 

However, the growing demand for sustainable and eco-efficient logistics has led to the emergence of the 
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Approach (FFPA) is applied to derive compromise solutions that balance economic efficiency with environmental 

responsibility. A numerical example illustrates the practicality and effectiveness of the proposed method in supporting 

eco-friendly and optimized transportation planning. This approach provides a robust decision-making tool for 

achieving sustainability goals in complex and uncertain transportation environments.  

Keywords: Fermatean fuzzy parameters, Fermatean fuzzy transportation problems, Multi-objective optimization, 
Mathematical modeling. 

mailto:dastam66@gmail.com
mailto:gp7881@myamu.ac.in
https://doi.org/10.48314/ramd.vi.61
http://www.ramd.reapress.com/
mailto:gp7881@myamu.ac.in
mailto:gk2721@myamu.ac.in


 Nabeel and Ali |Risk Assess. Manage. Decis. 2(2) (2025) 144-159  

 

145

Multi-Objective Transportation Problem (MOTP), where multiple conflicting goals—such as minimizing 

transportation time, carbon emissions, and resource usage—are optimized simultaneously [4], [5]. 

In modern logistics networks, uncertainty in transportation parameters such as cost, time, supply, and demand 

is inevitable, especially under volatile economic and environmental conditions [1]. Fuzzy set theory has proven 

to be an effective tool for modeling such vagueness. Traditional fuzzy approaches, such as intuitionistic and 

Pythagorean fuzzy sets, have certain limitations when capturing higher degrees of uncertainty [6], [7]. 

Fermatean Fuzzy Sets (FFSs) have been introduced to overcome these limitations, offering a more flexible 

framework for representing uncertain data through extended truth, falsity, and indeterminacy memberships 

[3]. Transportation systems today face immense challenges of climate change, fuel consumption, and 

emissions reduction. This shift has fueled the development of green transportation models that incorporate 

environmental impact metrics, such as carbon footprint, into classical logistics optimization. [8] pressure to 

become greener, faster, and more reliable in response to the pressing global crisis. Integrating these concerns 

into the MOTP framework provides a more comprehensive basis for real-world decision-making, where 

minimizing operational cost alone is no longer sufficient [1]. There is a growing recognition that multi-

objective optimization must include sustainability goals alongside traditional efficiency metrics. Despite the 

advances in fuzzy modeling, few studies have directly addressed multi-objective green TPs using Fermatean 

fuzzy logic. Existing methods often simplify the complexity of environmental parameters or fail to transform 

fuzzy values into actionable insights effectively. The present study introduces a comprehensive solution 

framework to address this gap by developing a Fermatean Fuzzy Programming Approach (FFPA) and an 

New Fermatean Fuzzy Score Function (NFFSF). These tools enable more accurate modeling of uncertain, 

sustainability-related parameters and facilitate deriving compromise optimal solutions that balance cost, time, 

and environmental impact. This research aims to contribute a robust and flexible decision-making model that 

aligns with the evolving demands of green supply chain practices. 

The remainder of this paper is structured as follows: Section 2 discusses the literature review of the proposed 

problem. Section 3 introduces the fundamental definitions, theorems, and basic arithmetic operations 

associated with FFSs, which serve as the mathematical foundation for the proposed model, presents the 

formulation of the traditional TP and the MOTP, and demonstrates how these models are transformed into 

their crisp equivalents using the NFFSF. Section 3 proposes a mathematical modeling approach based on the 

FFPA, which is designed to handle multi-objective optimization under uncertainty. Section 4 outlines the 

methodology for solving the proposed MOTP model within the Fermatean fuzzy environment. Section 5 

provides a detailed numerical example to illustrate the applicability and effectiveness of the proposed 

approach. Finally, Section 6 concludes the paper by summarizing the key findings and suggesting possible 

directions for future research. 

2|Literature Review 

The TP has evolved from single-objective formulations to multi-objective extensions that align with real-

world complexities. The MOTP includes diverse objectives such as minimizing cost, time, deterioration of 

goods, inventory levels, emissions, congestion, or maximizing customer satisfaction and vehicle utilization 

[9], [10]. Solutions to these problems often require sophisticated techniques like goal programming, multi-

objective genetic algorithms, interactive evolutionary methods, and fuzzy programming [11], [12]. In recent 

years, the focus on environmental sustainability has further expanded the scope of MOTP, giving rise to green 

TPs where environmental objectives such as reducing carbon footprint, optimizing fuel efficiency, and 

minimizing pollutant emissions are prioritized alongside economic goals. This shift reflects a broader logistics 

and supply chain optimization trend toward eco-efficient decision-making. Incorporating such green 

objectives introduces additional layers of complexity, as trade-offs must be made between cost-effectiveness 

and environmental impact [13]. As a result, traditional linear and deterministic models often fall short in 

addressing the uncertainties and interdependencies among these competing goals. This has created a pressing 

need for more flexible and robust optimization frameworks, particularly those capable of capturing vagueness 
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and ambiguity inherent in real-world data, where fuzzy and hybrid intelligent systems have shown 

considerable promise. 

Uncertainty in transportation parameters has long been addressed using fuzzy set theory. Early methods 

utilized intuitionistic and Pythagorean fuzzy sets, but these had limitations in handling high uncertainty and 

conflicting objectives. FFSs, introduced by Senapati and Yager [3], extended these theories by allowing the 

square sum of truth and falsity membership degrees to be less than or equal to one. This made them 

particularly well-suited for modeling ambiguous data in complex decision-making environments. Senapati and 

Yager [3], [6] proposed operations and ranking methods for FFSs, including a score function for evaluating 

Fermatean fuzzy numbers. Sharma et al. [14] applied Fermatean Fuzzy Parameters (FFP) in optimizing 

transportation systems and presented algorithms based on Fermatean fuzzy logic. Akram et al. [7] introduced 

an extended Data Envelopment Analysis (DEA) approach for solving fuzzy TPs and proposed Trapezoidal 

FFPA to convert fuzzy problems into crisp form. Similarly, Ali and Javaid [8] developed a model using a 

novel score function and expected value method to tackle multi-objective fuzzy transportation issues. 

Sahoo [15], [16] emphasized using Fermatean fuzzy models in volatile logistics environments. His studies 

demonstrated how FFP and score-based models can pragmatically address uncertainty in transportation costs 

and supply-demand variability. Bouraima et al. [17] and Chaudhary et al. [5] proposed fuzzy frameworks for 

green urban transportation planning, showing that fuzzy logic models, including Fermatean variants, are 

gaining traction in sustainable decision support systems. While several studies have successfully applied fuzzy 

logic to TPs, there remains a significant gap in addressing green MOTPs, specifically under Fermatean Fuzzy 

Environments (FFEs). Most existing works focus either on cost or single-objective optimization or use less 

flexible fuzzy frameworks that cannot fully capture the complex uncertainty of real-world environmental 

factors. This paper addresses that gap by: 

I. Developing a multi-objective green transportation model under a Fermatean fuzzy framework. 

II. Proposing an NFFSF for transforming fuzzy parameters into crisp values. 

III. Applying an FFPA to derive compromise solutions that balance cost, time, and environmental objectives. 

These contributions offer a robust and sustainable approach to optimizing transportation systems in the face 

of environmental uncertainty and align with global goals for greener logistics. 

3|Preliminaries and Definitions 

The basic definitions of the Farmatean fuzzy programming, which are used in our proposed work, which is 

given below: 

Definition 1. According to [3], Farmatean fuzzy sets: A Farmatean Fuzzy Sets (FFSs) can be represented 

as ℱ̃ = {〈ω, αℱ̃(ω), βℱ̃(ω), ω ∈ X 〉}, Where αℱ̃(ω), X → [0,1] is the degree of satisfaction, and βℱ̃(ω), X → [0,1] 

is the degree of dissatisfaction, including the conditions. 

For any FFSs ℱ̃ and ω ∈ X, σℱ̃(ω) = √1 − (αℱ̃(ω))3 − (βℱ̃(ω))33  is identified as the degree of indeterminacy 

of ω ∈ X to ℱ̃. The set ℱ̃ = {〈ω, αℱ̃(ω), βℱ̃(ω), ω ∈ X 〉} is denoted as ℱ̃ = 〈αℱ̃ , βℱ̃〉.” 

Definition 2. Let ℱ̃ = 〈αℱ̃ , βℱ̃〉, ℱ̃1 = 〈αℱ̃1
, βℱ̃1

〉, and ℱ̃2 = 〈αℱ̃2
, βℱ̃2

〉 be three FFSs on the universal set X, and 

ζ > 0 be any scalar; then the arithmetic operations of FFSs are as follows, with numerical examples. 

Let ℱ̃ = 〈0.4, 0.7〉 , ℱ̃1 = 〈0.8, 0.6〉 and ℱ̃2 = 〈0.2, 0.9〉 be three FFSs and ζ = 2 be any scalar quantity. Then, 

0 ≤ αℱ̃(ω)3 + βℱ̃(ω)3 ≤ 1 for all  ω ∈ X .  

ℱ̃1 ⊕ ℱ̃2 = (√αℱ̃1
3 + αℱ̃2

3 − αℱ̃1
3αℱ̃2

3,
3

 βℱ̃1
βℱ̃2

 ) . 3.21.   (1) 

ℱ̃1 ⊕ ℱ̃2 = 〈0.8, 0.6〉 ⊕ 〈0.2, 0.9〉 = (0.8020, 0.54),  
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Definition 3. “Let ℱ̃ = 〈αℱ̃ , βℱ̃〉, ℱ̃1 = 〈αℱ̃1
, βℱ̃1

〉, and ℱ̃2 = 〈αℱ̃2
, βℱ̃2

〉 be three FFSs on the universal set X, 

and ζ > 0 be any scalar; then their arithmetic operations of FFS are defined as follows: 

Accuracy function of fermatean fuzzy sets 

Suppose ℱ̃ = 〈αℱ̃ , βℱ̃〉 be an FFS, then the accuracy function of FFSs is represented as follows: 

Theorem 1. Let ℱ̃ be an FFS ℱ̃ = 〈αℱ̃ , βℱ̃〉, then the score function ℱ̃ represented simply proceeds:  

Property 1. Consider an FFS ℱ̃ = 〈αℱ̃ , βℱ̃〉, then Sℱ̃ 
∗(ℱ̃ ) ∈ [0,1]. 

Proof: According to the ortho-pair definition, αℱ̃ , βℱ̃ ∈ [0,1]. Then, min(αℱ̃ , βℱ̃) ∈ [0,1], and also αℱ̃
3 ≥ o, 

βℱ̃
3 ≥ 0, αℱ̃

3 ≤ 1, and  

Again αℱ̃
3 − βℱ̃

3 ≤ 1, add one on both sides 

Hence, Sℱ̃ 
∗(ℱ̃ ) ∈ [0,1]. 

Theorem 2. Let ℱ̃ be an FFS ℱ̃ = 〈αℱ̃ , βℱ̃〉, then the NFFSF ℱ̃1d represented simply as follows: 

Property 2. Consider an FFS ℱ̃ = 〈αℱ̃ , βℱ̃〉, then Sℱ̃ 
∗(ℱ̃1d) ∈ [0,1]. 

ℱ̃1 ⊗ ℱ̃2 = (αℱ̃1
αℱ̃2

, √βℱ̃1

3 + βℱ̃2

3 − βℱ̃1

3βℱ̃2

33
 ), (2) 

ℱ̃1 ⊗ ℱ̃2 = 〈0.8, 0.6〉 ⊕ 〈0.2, 0.9〉 = (0.16, 0.923).  

ζ ⊙ ℱ̃ = (√1 − (1 − αℱ̃
3)ζ

3
, βℱ̃

ζ), (3) 

ζ ⊙ ℱ̃ = 2 ⊙ 〈0.4, 0.7〉 = (0.498, 0.49).  

ℱ̃ζ = (αℱ̃
ζ, √1 − (1 − βℱ̃

3)
ζ3

), (4) 

ℱ̃ζ = 〈0.4, 0.7〉2 = (0.064,0.828).  

ℱ̃1⋃ℱ̃2 = (max{αℱ̃1
, αℱ̃2

} , min{βℱ̃1
, βℱ̃2

}), (5) 

ℱ̃1⋃ℱ̃2 = (max{〈0.8, 0.6〉} , min{〈0.2, 0.9〉}) = (0.8, 0.2).  

ℱ̃1⋂ℱ̃2 = (min{αℱ̃1
, αℱ̃2

} , max{βℱ̃1
, βℱ̃2

}), (6) 

ℱ̃1⋂ℱ̃2 = (min{〈0.8, 0.6〉} , max{〈0.2, 0.9〉}) = (0.2, 0.6).  

ℱ̃c = (βℱ̃ , αℱ̃), (7) 

ℱ̃c = 〈0.4, 0.7〉c = (0.7,0.4).  

Aℱ̃(ℱ̃) = (αℱ̃
3 + βℱ̃

3).  

Sℱ̃ 
∗(ℱ̃ ) =

1

2
(1 + αℱ̃

3 − βℱ̃
3). (min(αℱ̃ , βℱ̃)).  

βℱ̃
3 ≤ 1 ⇒ 1 − βℱ̃

3 ≥ 0, ⇒ 1 + αℱ̃
3 − βℱ̃

3 ≥ 0, ∴
1

2
(1 + αℱ̃

3 − βℱ̃
3). (min(αℱ̃ , βℱ̃)) ≥

0. 
 

⇒ 1 + αℱ̃
3 − βℱ̃

3 ≤ 2  (∵ αℱ̃
3 ≥ 0),  

⇒
1

2
(1 + αℱ̃

3 − βℱ̃
3). (min(αℱ̃ , βℱ̃)) ≤ 1 (∵ min(αℱ̃ , βℱ̃) ≤ 1).  

Sℱ̃ 
∗(ℱ̃1d) =

1

2
(1 + αℱ̃ − βℱ̃). (min(αℱ̃ , βℱ̃))2.  
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Proof: According to the ortho-pair definition, αℱ̃ , βℱ̃ ∈ [0,1]. Then, min(αℱ̃ , βℱ̃) ∈ [0,1], and also αℱ̃ ≥ o, βℱ̃ ≥

0, αℱ̃ ≤ 1, and βℱ̃ ≤ 1 ⇒ 

Again, αℱ̃ ≤ 1, and βℱ̃ ≤ 1, αℱ̃ − βℱ̃ ≤ 1, add one to both sides. 

Hence, Sℱ̃ 
∗(ℱ̃1d) ∈ [0,1]. 

Theorem 3. Let ℱ̃ be an FFS ℱ̃ = 〈αℱ̃ , βℱ̃〉, then the Type 1 score function ℱ̃1 represented as follows: 

Type 1: Fermatean fuzzy score function Sℱ̃ 
∗(ℱ̃11) =

1

2
(1 + αℱ̃

2 − βℱ̃
2). According to the ortho-pair 

definition, αℱ̃ , βℱ̃ ∈ [0,1], and αℱ̃
2 ≥ o, βℱ̃

2 ≥ 0, αℱ̃
2 ≤ 1, and βℱ̃

2 ≤ 1. 

Now, again, αℱ̃
2 − βℱ̃

2 ≤ 1, add on both sides. 

Hence, Sℱ̃ 
∗(ℱ̃11) ∈ [0,1]. Similarly, 

Type 2: Fermatean fuzzy score function Sℱ̃ 
∗(ℱ̃12) =

1

3
(1 + 2αℱ̃

3 − βℱ̃
3). 

Type 3: Fermatean fuzzy score function Sℱ̃ 
∗(ℱ̃13) =

1

2
(1 + αℱ̃

2 − βℱ̃
2). |αℱ̃ − βℱ̃|. 

“Let  ℱ̃1 = 〈αℱ̃1
, βℱ̃1

〉, and ℱ̃2 = 〈αℱ̃2
, βℱ̃2

〉 be two FFSs, then the following operations will be satisfied: 

Example 1. Let ℱ̃1 = 〈0.7,0.6〉 and ℱ̃2 = 〈0.8,0.5〉 be two FFSs, then we will see the following operations: 

By using the score function 

Hence  Sℱ̃ 
∗(ℱ̃1 ) < Sℱ̃ 

∗(ℱ̃1 )  ⇒ ℱ̃1 < ℱ̃2. 

Example 2. Let ℱ̃1 = 〈0.9,0.8〉 and ℱ̃2 = 〈0.6,0.5〉 be two FFS; then the following operations are represented. 

By using this score function, 

1 − βℱ̃ ≥ 0, ⇒ 1 + αℱ̃ − βℱ̃ ≥ 0,∴
1

2
(1 + αℱ̃ − βℱ̃). (min(αℱ̃ , βℱ̃))2 ≥ 0.  

⇒ 1 + αℱ̃ − βℱ̃ ≤ 2 ⇒ (min(αℱ̃ , βℱ̃) ≤ 1) ⇒ (min(αℱ̃ , βℱ̃))2 ≤ 1,  

⇒
1

2
(1 + αℱ̃ − βℱ̃). (min(αℱ̃ , βℱ̃))2  ≤ 1  (∵ (min(αℱ̃ , βℱ̃))2  ≤ 1).  

⇒ 1 − βℱ̃
2 ≥ 0, ⇒ 1 + αℱ̃

2 − βℱ̃
2 ≥ 0 ∴

1

2
(1 + αℱ̃

2 − βℱ̃
2) ≥ 0.  

⇒ 1 + αℱ̃
2 − βℱ̃

2 ≥ 2 (∵ αℱ̃
2 ≥ 0),  

⇒
1

2
(1 + αℱ̃

2 − βℱ̃
2) ≥ (∵ 〈αℱ̃ , βℱ̃〉 ≤ 1).  

Sℱ̃ 
∗(ℱ̃1 ) ≥ Sℱ̃ 

∗(ℱ̃2 ) with Aℱ̃(ℱ̃1) > Aℱ̃(ℱ̃2)  if  ℱ̃1 > ℱ̃2.  

Sℱ̃ 
∗(ℱ̃1 ) ≤ Sℱ̃ 

∗(ℱ̃2 ) with Aℱ̃(ℱ̃1) < Aℱ̃(ℱ̃2)  if  ℱ̃1 < ℱ̃2.  

Sℱ̃ 
∗(ℱ̃1 ) = Sℱ̃ 

∗(ℱ̃2 ) with Aℱ̃(ℱ̃1) = Aℱ̃(ℱ̃2)  if  ℱ̃1 = ℱ̃2.”  

 Sℱ̃ 
∗(ℱ̃ ) =

1

2
(1 + αℱ̃

3 − βℱ̃
3). (min(αℱ̃ , βℱ̃)).  

Sℱ̃ 
∗(ℱ̃1 ) =

1

2
(1 + 0.73 − 0.63). (min(0.7,0.6)) = 0.337.  

Sℱ̃ 
∗(ℱ̃2 ) =

1

2
(1 + 0.83 − 0.53). (min(0.8,0.5)) = 0.346.  
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Hence Sℱ̃ 
∗(ℱ̃1 ) > Sℱ̃ 

∗(ℱ̃1 )  ⇒ ℱ̃1 > ℱ̃2. In the initial part of this section, the notations are outlined and 

presented in Table 1.   

Table 1. Notations of the mathematical model.  

 

 

 

 

 

 

 

 

 

3.1|Mathematical Model 

The formulation of the mathematical model of a traditional TP is defined as follows: 

Now, we use the FFP in this mathematical model under FFE. The mathematical model is presented as 

follows: 

Such that 

 Sℱ̃ 
∗(ℱ̃ ) =

1

2
(1 + αℱ̃

3 − βℱ̃
3). (min(αℱ̃ , βℱ̃)).  

Sℱ̃ 
∗(ℱ̃1 ) =

1

2
(1 + 0.93 − 0.83). (min(0.9,0.8)) = 0.486.  

Sℱ̃ 
∗(ℱ̃2 ) =

1

2
(1 + 0.63 − 0.53). (min(0.6,0.5)) = 0.022.  

i Index for sources for all  i = 1,2, . . . , m. 
j index for destinations for all  j = 1,2, . . . , n. 
m Total number of sources. 

n Total number of destinations. 

k The number of conveyances, for all  k = 1,2, . . . , K. 
t The objective functions, for all  t = 1, 2, . . . , T. 
si Supply capacity at source i. 
dj Demand requirement at destination j. 

ek Product shipment capacities of conveyance k. 
xij The quantity of goods transported from source i   to destination j. 

xijk Number of goods transported by conveyance k from source i to destination j. 

cij Cost coefficient associated with transporting one unit from source i to destination j. 

C(t)
ijk The unit transportation cost for the objective function at level t from the ith source 

to the jth destination via the kth mode of conveyance. 

Min f = ∑ ∑ cij
n
j=1

m
i=1 xij, 

s. t. 

∑ xij

n

j=1

≤ si, (i = 1,2, . . . , m), 

∑ xij

m

i=1

≥ dj, (j = 1,2. . . . , n), 

xij ≥ 0, for all i and j. 

(8) 

Minimize f ∗ = ∑ ∑ Cij
ℱ̃ n

j=1
m
i=1 xij, 

s. t. 

∑ xij

n

j=1

≤ si
ℱ̃ , (i = 1,2, . . . , m), 

∑ xij
m
i=1 ≥ dj

ℱ̃ , (j = 1,2. . . . , n). 

(9) 
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Now, we convert this mathematical model into crisp form using NFFSF under FFEs. 

3.2|Multi-Objective Transportation Problem Mathematical Model 

The formulation for the MOTP mathematical model with FFP under the FFE is as follows: 

Such that 

Where si
ℱ̃ = ( αs̃i

, βs̃i
) units are available at the ith supply node, and dj

ℱ̃ = ( αd̃j
, βd̃j

) units are in demand on 

the jth demand node. Let the transportation cost Cij
ℱ̃ = ( αc̃ij

, βc̃ij
) is the unit Fermatean fuzzy transportation 

cost and the ith source node to the jth demand node, and δij is the number of items that are carried from the 

ith source node to the jth demand node. Now, we convert the MOTP mathematical model with FFP into a 

deterministic form using the proposed NFFSF. The crisp mathematical model of MOTP can be represented 

as follows: 

si
ℱ̃ = ( αs̃i

, βs̃i
),  where 0 ≤ αs̃i

3 + βs̃i

3 ≤ 1, 

dj
ℱ̃ = ( αd̃j

, βd̃j
), where 0 ≤ αd̃j

3 + βd̃j

3 ≤ 1, 

Cij
ℱ̃ = ( αc̃ij

, βc̃ij
), where 0 ≤ αc̃ij

3 + βc̃ij

3 ≤ 1, 

xij ≥ 0, for all i and j.

 

Minimize f ∗ = ∑ ∑ S(Cij
ℱ̃ )n

j=1
m
i=1 xij, 

s. t. 

∑ xij

n

j=1

≤ S(si
ℱ̃ ), (i = 1,2, . . . , m), 

∑ xij

m

i=1

≥ S(dj
ℱ̃ ), (j = 1,2. . . . , n), 

xij ≥ 0, for all i and j. 

(10) 

Minimize ft
∗ = ∑ ∑ Cijt

ℱ̃ n
j=1

m
i=1 xij,  for all  t = 1, 2, . . . , T, 

s. t.  

∑ xij

n

j=1

≤ si
ℱ̃ , (i = 1,2, . . . , m), 

∑ xij
m
i=1 ≥ dj

ℱ̃ , (j = 1,2. . . . , n), 

(10) 

si
ℱ̃ = ( αs̃i

, βs̃i
),  where  0 ≤ αs̃i

3 + βs̃i

3 ≤ 1, 

dj
ℱ̃ = ( αd̃j

, βd̃j
), where   0 ≤ αd̃j

3 + βd̃j

3 ≤ 1, 

Cij
ℱ̃ = ( αc̃ij

, βc̃ij
), where  0 ≤ αc̃ij

3 + βc̃ij

3 ≤ 1, 

xij ≥ 0, for all  i and j, 
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4|Methodology  

The FFSs introduced by Senapati and Yager [3] represent a significant extension of intuitionistic fuzzy sets 

and offer enhanced flexibility in modeling uncertain environments. In FFSs, the sum of the truth and falsity 

membership degrees may exceed one, provided that the sum of their squares remains less than or equal to 

one. This unique property allows for a richer representation of uncertainty than intuitionistic and Pythagorean 

fuzzy sets. The authors also proposed fundamental operations and a score function to rank FFSs, laying the 

groundwork for applications in complex decision-making scenarios. Silambarasan [18] further contributed by 

examining the algebraic and operational properties of FFSs, thus strengthening the theoretical foundation of 

Fermatean fuzzy logic. 

Building upon this foundation, Akram et al. [7] introduced interval-valued FFSs, offering an advanced 

mechanism to model incomplete and imprecise information. Their approach bypassed the need to convert 

fuzzy models into crisp equivalents, thereby preserving the richness of the fuzzy data and improving 

computational efficiency. This technique was applied to fractional TPs, demonstrating its effectiveness in 

fluctuating supply, demand, and cost parameters. In the broader context of fuzzy optimization, Zimmermann 

[19] pioneered the application of fuzzy linear programming to multi-objective problems, emphasizing the 

importance of compromise solutions when objectives conflict. His work laid the groundwork for modern 

fuzzy programming techniques that use linear, exponential, or hyperbolic membership functions to balance 

multiple goals. Over time, similar methodologies have been adapted to intuitionistic and Pythagorean fuzzy 

environments. However, these frameworks are often limited in their ability to model deep uncertainty, 

motivating the need for more robust tools like Fermatean fuzzy logic. 

To address these challenges, we propose an FFPA explicitly designed to solve multi-objective decision 

problems in an FFE. This nonlinear programming framework simultaneously considers all objectives and 

accommodates uncertainty using FFP. The proposed model for fermatean fuzzy programming incorporates 

upper bounds Ut and lower bounds Lt for the objective function ft
∗(x). Additionally, it involves the 

membership function μ(ft
∗(x)) and non-membership function θ(ft

∗(x)) for the objective function ft
∗(x). This 

model aims to optimize decision-making under uncertainty, leveraging FFS to handle imprecision and 

uncertainty in objective functions. Including upper and lower bounds and membership and non-membership 

functions allows for a comprehensive representation of uncertainty, enabling robust decision-making in 

scenarios where precise information is lacking. Then, the proposed mathematical model for FFPA is as 

follows: 

where   

Minimize ft
∗ = ∑ ∑ S(Cijt

ℱ̃ )n
j=1

m
i=1 xij,   t = 1, 2, . . . , T, 

s. t. 

∑ xij

n

j=1

≤ S(si
ℱ̃ ), (i = 1,2, . . . , m), 

∑ xij

m

i=1

≥ S(dj
ℱ̃ ), (j = 1,2. . . . , n), 

xij ≥ 0, for all i and j. 

(11) 

Max δτ1
3 − τ2

3,  

μ(ft
∗(x))

3
≥ τ1

3, for all t,    
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The membership and non-membership function of objective functions are represented as follows: 

And 

i.e., 

where 

This formulation ensures the solution reflects the best compromise across all objectives, balancing cost-

efficiency, timeliness, and environmental considerations within a single fuzzy decision-making framework. 

The FFPA is particularly suitable for real-world green TPs, where uncertainty is pervasive, and decision-

makers must evaluate multiple sustainability-oriented goals concurrently. 

4.1|Solution Procedure  

To effectively address the MOTP within the FFE, we propose a structured and comprehensive solution 

methodology based on the FFPA. This methodology is designed to handle multi-objective optimization's 

inherent uncertainty and complexity by integrating fuzzy logic with mathematical programming. The goal is 

θ(ft
∗(x))

3
≤ τ2

3, for all t.  

μ(ft
∗(x)) = {

1,

Ut −  ft
∗(x)

Ut − Lt

0,

,           

if ft
∗(x) ≤ Lt,

if Lt ≤  ft
∗(δ) ≤ Ut,

 if ft
∗(x) ≥ Ut.

 (11) 

θ(ft
∗(x)) = {

0,

 ft
∗(x) − Lt

Ut − Lt

1,

,           

if ft
∗(x) ≤ Lt,

if Lt ≤ ft
∗(δ) ≤ Ut,

 if ft
∗(x) ≥ Ut.

  

(Ut −  ft
∗(x))3 ≥ dt

3τ1
3,  (ft

∗(x) − Lt)3 ≤ dt
3τ2

3,  

dt = Ut − Lt, 

s. t. 

x11 + x12+. . . . . . . . . . . . . . . . . . . . +x1n ≤ s1, 

x21 + x22+. . . . . . . . . . . . . . . . . . . . +x2n ≤ s2, 

:    :    :    :    :     :     : 

:    :    :    :    :     :     : 

xm1 + xm2+. . . . . . . . . . . . . . . . . . . . +xmn ≤ sm, 

x11 + x21+. . . . . . . . . . . . . . . . . . . . +xm1 ≤ d1, 

x12 + x22+. . . . . . . . . . . . . . . . . . . . +xm2 ≤ d2, 

:    :    :    :    :     :     : 

:    :    :    :    :     :     : 

x1m + x2m+. . . . . . . . . . . . . . . . . . . . +xnm ≤ dm, 

∑ si

m

i=1

= ∑ dj

n

j=1

, xij ≥ 0, 0 ≤ τ1
3, τ2

3 ≤ 1, ≤ τ1
3 + τ2

3 ≤ 1, τ1
3 ≥ τ2

3. 
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to derive robust, compromise-based solutions that balance cost efficiency, environmental sustainability, and 

operational efficiency. The procedure begins by formulating the MOTP model in a Fermatean fuzzy 

framework, where all input parameters—such as transportation costs, supply capacities, demand 

requirements, and environmental indicators—are expressed as Fermatean fuzzy numbers. This formulation 

effectively captures uncertainty and imprecision in real-world logistics data. 

Once the fuzzy model is established, it is converted into a deterministic (Crisp) form using the NFFSF. This 

transformation allows for the mathematical tractability of the fuzzy parameters, enabling the application of 

standard optimization solvers. Each objective function—typically including total transportation cost, total 

travel time, and carbon emissions—is then solved individually, allowing for extracting primary solutions and 

a better understanding of each objective's optimal behavior in isolation. Subsequently, a payoff matrix is 

constructed to evaluate the trade-offs among the objectives. This matrix captures the performance of each 

solution across all defined criteria and is used to determine the upper and lower bounds for each objective 

function. These bounds are computed using Fermatean fuzzy aggregation techniques, ensuring consistency 

with the fuzzy environment while preparing the model for compromise optimization. 

The fully defined crisp model is reformulated in the final step using the proposed FFPA. This version 

integrates the calculated bounds and applies membership and non-membership functions to model 

satisfaction and dissatisfaction levels for each objective. The resulting FFPA model is then solved using the 

SciPy library in Python, a robust numerical computation and optimization tool. Through this approach, we 

obtain a compromise optimal solution that reflects balanced performance across all objectives under 

uncertainty. The implementation of this methodology is supported by a numerical example, with 

corresponding computations and results presented in Tables 1–5. 

5|Numerical 

To demonstrate the applicability and effectiveness of the proposed methodology, we present a numerical 

example based on an MOTP under an FFE. In this problem, all parameters—including transportation cost, 

transportation time, carbon emissions, supply, and demand—are represented using FFPs. The objective is to 

optimize the transportation system simultaneously across three criteria: Minimizing total transportation cost, 

time, and carbon emissions, which are essential goals in green and sustainable logistics planning. The 

transportation network considered in this example consists of three sources and four destinations. The 

following tables contain the Fermatean fuzzy data for transportation cost, time, carbon emissions, and the 

supply-demand values for each node. 

Table 1. Total transportation cost. 

 

 

 

Table 2. Total transportation time. 

 

 

 

Table 3. Carbon emissions cost. 

 

 

 

Source 𝛃𝟏 𝛃𝟐 𝛃𝟑 𝛃𝟒 

α1 (0.8, 0.7) (0.7, 0.2) (0.1, 0.6) (0.2, 0.9) 

α2 (0.5, 0.8) (0.1, 0.9) (0.2, 0.6) (0.2, 0.1) 

α3 (0.3, 0.4) (0.7, 0.99) (0.1, 0.8) (0.7, 0.9) 

Source 𝛃𝟏 𝛃𝟐 𝛃𝟑 𝛃𝟒 

α1 (0.4, 0.8) (0.7, 0.5) (0.2, 0.9) (0.6, 0.9) 

α2 (0.7, 0.5) (0.1, 0.99) (0.6, 0.8) (0.4, 0.7) 

α3 (0.6, 0.8) (0.8, 0.6) (0.5, 0.1) (0.3, 0.9) 

Source 𝛃𝟏 𝛃𝟐 𝛃𝟑 𝛃𝟒 

α1 (0.5, 0.7) (0.6, 0.8) (0.2, 0.7) (0.8, 0.7) 

α2 (0.4, 0.5) (0.1, 0.2) (0.8, 0.1) (0.4, 0.7) 

α3 (0.8, 0.4) (0.6, 0.4) (0.4, 0.9) (0.5, 0.9) 
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Table 4. Supply. 

  

 

Table 5. Demand. 

 

  

Now, convert the Fermatean fuzzy data into crisp form using NFFSF. The crisp data of the proposed problem 

are represented as follows: 

Table 6. Total transportation cost. 

  

 

 

Table 7. Total transportation time. 

  

 

 

Table 8. Carbon emissions cost. 

  

 

 

Table 9. Supply. 

  

  

  

Table 10. Demand. 

 

 

Since ∑ S(si
ℱ̃ )m

i=1 = ∑ S(dj
ℱ̃ )n

j=1 = 0.18, the problem is balancing MOTP. We then solved the three TPs and 

obtained the basic feasible or optimal solutions for each objective. For the first objective function (Total 

transportation cost): 

After solving this problem using the Scipy optimization library, we obtain the optimal solution as follows: 

𝐢 𝛂𝟏 𝛂𝟐 𝛂𝟑 

(αℱ̃ i
, βℱ̃ i

) (0.3, 0.5) (0.4, 0.8) (0.6, 0.4) 

𝐣 𝛃𝟏 𝛃𝟐 𝛃𝟑 𝛃𝟒 

(αℱ̃j
, βℱ̃ j

) (0.4, 0.7) (0.2, 0.5) (0.6, 0.4) (0.2, 0.5) 

Source 𝛃𝟏 𝛃𝟐 𝛃𝟑 𝛃𝟒 

α1 (0.2695) (0.03) (0.0025) (0.006) 

α2 (0.0875) (0.001) (0.012) (0.0055) 

α3 (0.0405) (0.1739) (0.0015) (0.196) 

Source 𝛃𝟏 𝛃𝟐 𝛃𝟑 𝛃𝟒 

α1 (0.048) (0.15) (0.006) (0.126) 

α2 (0.15) (0.00055) (0.144) (0.056) 

α3 (0.144) (0.216) (0.007) (0.018) 

Source 𝛃𝟏 𝛃𝟐 𝛃𝟑 𝛃𝟒 

α1 (0.1) (0.144) (0.01) (0.2695) 

α2 (0.072) (0.0045) (0.0085) (0.056) 

α3 (0.112) (0.096) (0.04) (0.075) 

𝐢 𝛂𝟏 𝛂𝟐 𝛂𝟑 

αℱ̃ i
, βℱ̃ i

 (0.036) (0.048) (0.096) 

𝐣 𝛃𝟏 𝛃𝟐 𝛃𝟑 𝛃𝟒 

(αℱ̃j
, βℱ̃ j

) (0.056) (0.014) (0.096) (0.014) 

f1
∗(x) = 0.2695x11 + 0.03x12 + 0.0225x13 + 0.006x14 + 0.0875x21 + 0.001x22 + 

0.012x23 + 0.0055x24 + 0.0405x31 + 0.1739x32 + 0.0015x33 + 0.196x34, 

s. t.  

x11 + x12 + x13 + x14 ≤ 0.036, x21 + x22 + x23 + x24 ≤ 0.048, 

x31 + x32 + x33 + x34 ≤ 0.096, x11 + x21 + x31 ≤ 0.056, x11 + x22 + x32 ≤ 0.014, 

x13 + x23 + x33 ≤ 0.096, x14 + x24 + x34 ≤ 0.014, ∑ si
m
i=1 = ∑ dj

n
j=1 , xij ≥ 0. 
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For the second objective function (Total transportation time): 

After solving this problem using the Scipy optimization library, we obtain the optimal solution as follows: 

For the third objective function (Carbon emissions): 

After solving this problem using the Scipy library, we obtain the optimal solution as follows: 

 f1
∗(x): 1.6563000993102234e-1,  x11 =  6.701462050627256e-14, 

x12 = 5.447537900889634e-13, x13 = 6.540701226004457e-13, 

x14 = 2.3433877894449986e-12, x21 = 1.6269086281778882e-13, 

x22 = 2.8037183688672324e-12, x23 = 1.1917212705073402e-12, 

x24 = 2.4672960645959706e-12, x31 = 3.4491566715606586e-13, 

x32 = 8.160054271726014e-14, x33 = 8.95759410927497e-12, 

x34 = 8.134841315142161e-14. 

 

 f2
∗(x) = 0.048x11 + 0.15x12 + 0.006x13 + 0.126x14 + 0.15x21 + 0.00055x22 + 0.144x23

+ 0.056x24 + 0.144x31 + 0.216x32 + 0.007x33 + 0.018x34, 

s. t. 

x11 + x12 + x13 + x14 ≤ 0.036, x21 + x22 + x23 + x24 ≤ 0.048, 

x31 + x32 + x33 + x34 ≤ 0.096, x11 + x21 + x31 ≤ 0.056, x11 + x22 + x32 ≤ 0.014, 

x13 + x23 + x33 ≤ 0.096, x14 + x24 + x34 ≤ 0.014,  ∑ si
m
i=1 = ∑ dj

n
j=1 , xij ≥ 0. 

 

 f2
∗(x): 4.211826137490883e-12, x11 = 8.263438891810004e-12, 

x12 = 2.5838370001640527e-12, x13 = 6.335818003711425e-11, 

x14 = 3.0146972331010592e-12, x21 = 2.5299779571885494e-12, 

x22 = 8.790645598327858e-12, x23 = 2.669450392021306e-12, 

x24 = 6.670724613805137e-12, x31 = 2.6400866542766385e-12, 

x32 =1.800596343315708e-12, x33 =5.36625998899776e-11, 

x34 = 2.1142895443476957e-11. 

 

 f3
∗(x) = 0.1x11 + 0.144x12 + 0.01x13 + 0.2695x14 + 0.072x21 + 0.0045x22 +

0.0085x23 + 0.056x24 + 0.112x31 + 0.096x32 + 0.04x33 + 0.075x34,  

s. t. 

x11 + x12 + x13 + x14 ≤ 0.036, x21 + x22 + x23 + x24 ≤ 0.048, 

x31 + x32 + x33 + x34 ≤ 0.096, x11 + x21 + x31 ≤ 0.056, x11 + x22 + x32 ≤ 0.014, 

x13 + x23 + x33 ≤ 0.096, x14 + x24 + x34 ≤ 0.014, ∑ si
m
i=1 = ∑ dj

n
j=1 , xij ≥ 0. 

 

f3
∗
: 7.110957493321067e-12, x11 = 6.1746254985444975e − 12, 

x12 = 4.317295196854511e-12, x13 = 6.194365813830885e-11, 

 x14 = 2.30864320123096e-12, x21 = 8.587199756168197e-12, 
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After obtaining the solutions for all objectives individually, we obtain the payoff matrix in Table 11. 

 Table 11. Payoff matrix. 

 

  

 

  

  

So, we can find the upper and lower bounds for all objective functions and dt = Ut − Lt, which are as follows: 

Now, we solved the mathematical model using the proposed FFPA. Where 

i.e., 

Where 

Now, we calculate the lower and upper bounds of the proposed problem.  

x22 = 7.54519853118348e-11, x23 = 6.803357681972516e-11, 

x24 =1.0962059083018053e-11, x31 = 5.5603385632255506e-12, 

x32 =6.461011159919284e-12, x33 =1.5425548584548254e-1, 

 x34 =8.269047323003344e-12. 

 ∆𝟏 ∆𝟐 ∆𝟐 

f1
∗
 1.6563000993102234e-13 

= (0.0000037438382) 
0.000888743 0.001341743 

f2
∗
 0.0018528783 4.211826137490883e-12 

= (0.0000258783) 
0.00995687 

f3
∗
 0.0115596912 0.014590691 7.110957493321067e-12 

= (0.00004369123) 

L1 = 0.0000037438382, U1 = 0.001341743, d1 = 0.001337991618, 

L2 = 0.0000258783, U2 = 0.00995687, d2 = 0.0099309917, 

L3 = 0.00004369123, U3 = 0.014590691, d3 = 0.01454699977. 

 

μ(ft
∗(x))

3
≥ τ1

3, for all t, θ(ft
∗(x))

3
≤ τ2

3, for all t.  

(Ut −  ft
∗(x))3 ≥ dt

3τ1
3,  (ft

∗(x) − Lt)3 ≤ dt
3τ2

3,  

dt = Ut − Lt.  

⟹ (0.001341743 −  f1
∗)3 ≥ 0.0000000023897975τ1

3
, 

⟹ (0.00995687 −  f2
∗)3 ≥ 0.000000979146657τ1

3
, 

⟹ (0.014590691 −  f3
∗)3 ≥ 0.000003077731643τ1

3, 

⟹ ( f1
∗ − 0.0000037438382)3 ≥ 0.0000000023897975τ2

3, 

⟹ ( f2
∗ − 0.0000258783)3 ≥ 0.000000979146657τ2

3
, 

⟹ ( f3
∗ − 0.00004369123)3 ≥ 0.000003077731643τ2

3, 

 

Subject to  

x11 + x12+. . . . . . . . . . . . . . . . . . . . +x1n ≤ s1, 

x21 + x22+. . . . . . . . . . . . . . . . . . . . +x2n ≤ s2, 

:    :    :    :    :     :     : 
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After solving the above problem using the Scipy optimization library, the optimal solution of the proposed 

problem is represented as follows:  

6|Conclusion 

In this study, we developed a robust and flexible mathematical framework to address green MOTP under 

uncertainty using the FFPA. We began by formulating the traditional TP. We extended it to an MOTP that 

minimizes transportation cost, time, and carbon emissions—three critical dimensions in sustainable logistics 

and environmental management. To effectively handle the vagueness inherent in real-world transportation 

data, we FFP and utilized the NFFSF to convert fuzzy data into crisp, solvable forms. The proposed FFPA 

approach demonstrates strong potential in delivering compromise optimal solutions for multi-objective 

decision-making scenarios, particularly in the context of green transportation systems. By incorporating 

environmental objectives into the optimization process, our method supports more informed and balanced 

decision-making, where economic efficiency does not come at the expense of ecological sustainability. The 

numerical example validated the practical applicability of the proposed model and highlighted its ability to 

navigate trade-offs between conflicting goals in uncertain environments. This work contributes a valuable 

tool for planners and decision-makers seeking to design eco-efficient transportation networks. The FFPA 

framework can be readily adapted to a range of real-world applications, and its compatibility with other fuzzy 

environments further enhances its relevance for future research in sustainable and resilient logistics. 

:    :    :    :    :     :     : 

xm1 + xm2+. . . . . . . . . . . . . . . . . . . . +xmn ≤ sm, 

x11 + x21+. . . . . . . . . . . . . . . . . . . . +xm1 ≤ d1, 

x12 + x22+. . . . . . . . . . . . . . . . . . . . +xm2 ≤ d2, 

:    :    :    :    :     :     : 

:    :    :    :    :     :     : 

x1m + x2m+. . . . . . . . . . . . . . . . . . . . +xnm ≤ dm, 

∑ si

m

i=1

= ∑ dj

n

j=1

, xij ≥ 0, 0 ≤ τ1
3, τ2

3 ≤ 1, ≤ τ1
3 + τ2

3 ≤ 1, τ1
3 ≥ τ2

3. 

f1
∗ = 0.004191344499158313,  f2

∗ =0.003977749589394637, 

f3
∗ = 0.0020184923860561447, τ1 = 0.001289240882763909, 

τ2 =0.0006606981979325261, y11 = 0.30573288027448287, 

y12 = 0.02845428401361542, y13 = 0.0011005037929001924, 

 y14 = 0.0010085155145783693, y21 = 0.017421950162707155, 

 y22 = 0.001010127111597806, y23 = 0.0011462979936144556, 

 y24 = 0.0010634351469773963, y31 = 0.01747142198034052, 

 y32 = 0.0010542754473920062, y33 = 0.02057583566682344, 

 y34 = 0.0009997035453720312. 
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